Parameter Tools is a generic method of handling parameter definition, assignment, and retrieval. A parameter may be defined for various entities where an entity is the level at which you want to allow the parameter defined (e.g. package level, system level, division level, location level, user level, etc.). A developer may then determine in which order the values assigned to given entities are interpreted. The following are some basic definitions used by Parameter Tools:

Definitions

Entity:

An entity is a level at which you can define a parameter. The entities allowed are stored in the Parameter Entity file (#8989.518). The list of allowable entities at the time this utility was released were:

Prefix
Message
Points to File

PKG
Package
Package (9.4)

SYS
System
Domain (4.2)

DIV
Division
Institution (4)

SRV
Service
Service/Section (49)

LOC
Location
Hospital Location (44)

TEA
Team
Team (404.51)

CLS
Class
Usr Class (8930)

USR
User
New Person (200)

BED
Room-Bed
Room-Bed (405.4)

OTL
Team (OE/RR)
OE/RR List (101.21)

The entity may be referenced as follows:

1) The internal variable pointer (nnn;GLO(123,)

2) The external format of the variable pointer using the 3 character prefix (prefix.entryname)

3) The prefix alone to set the parameter based on current entity selected. (prefix)

Method 3 uses the following values for the following entities:

USR
Current value of DUZ

DIV
Current value of DUZ(2)

SYS
System (domain)

PKG
Package to which the parameter belongs

Entries are maintained via ToolKit patches. Entries existing in the file at the time it is referenced are considered supported.

Routine XPAR

Input Parameter Definitions

Parameter:

A parameter is the actual name which values are stored under. The name of the parameter must be namespaced and it must be unique. Parameters can be defined to store the typical package parameter data (e.g. the default add order screen in OE/RR), but they can also be used to store GUI application screen settings a user has selected (e.g. font or window width). When a parameter is defined, the entities, which may set that parameter, are also defined. The definition of parameters is stored in the PARAMETER DEFINITION file (#8989.51).

Instance:

Most parameters will set instance to 1. Instances are used when more than one value may be assigned to a given entity/parameter combination. An example of this would be lab collection times at a division. A single division may have multiple collection times. Each collection time would be assigned a unique instance.

Value:

A value may be assigned to every parameter for the entities allowed in the parameter definition. Values are stored in the PARAMETERS file (#8989.5). Values may be passed in external or internal format. If using internal format for a pointer type parameter, the value must be preceded with the ` character.). If the value is being assigned to a word processing parameter, the text may be passed in the subordinate nodes of Value (e.g. Value (1,0)=Text) and the variable Value itself may be defined as a title or description of the text.

Error:

Passed in by reference. It will return any error condition that may occur. If no error occurs, the value assigned will be 0 (zero). If an error does occur, it will be in the format: "#^errortext".

Parameter Template:

A parameter template is similar to an input template. It contains a list of parameters that can be entered through an input session (e.g. option). Templates are stored in the Parameter Template file (#8989.52). Entries in this file must also be namespaced.

EN^XPAR(Entity,Parameter,Instance,Value,.Error)

This entry point will do one of the following:

· Add the value as a new entry to the Parameters file if the Entity/Parameter/Instance combination does not already exist.

· Change the value assigned to the parameter if the Entity/Parameter/Instance combination already exists.

· Delete the parameter instance if the value assigned is "@".

ADD^XPAR(Entity,Parameter,Instance,Value,.Error)

This entry point can be called to add a new parameter value.

 CHG^XPAR(Entity,Parameter,Instance,Value,.Error)

This entry point can be called to change an existing parameter value.

DEL^XPAR(Entity,Parameter,Instance,.Error)

This entry point can be called to delete an existing parameter value

NDEL^XPAR(Entity,Parameter,.Error)

This entry point can be called to delete the value for all instances of a parameter for a given entity.

REP^XPAR(Entity,Parameter,CurrentInstance,NewInstance,.Error)

This entry point will allow a developer to replace the value of an instance with another value.

$$GET^XPAR(Entity,Parameter,Instance,Format)

This call will allow you to retrieve the value of a parameter. The value is returned from this extrinsic function in the format defined by the variable Format. Entity is defined as the single entity or group of entities you want to look at in order to retrieve the value. Entities may be passed in internal or external format (e.g. LOC.PULMONARY or LOC.'57 or 57;SC(). The list of entities in this variable may be defined as follows:

1) A single entity to look at (e.g. LOC.PULMONARY).

2) The word "ALL" which will tell the utility to look for values assigned to the parameter using the entity precedence defined in the PARAMETER DEFINITION file.

3) A list of entities you want to search (e.g. "USR^LOC^SYS^PKG"). The list is searched from left to right with the first value found returned.

4) Items 2 or 3 with specific entity such as: ALL^LOC.PULMONARY - to look at the defined entity precedence, but when looking at location, only look at the PULMONARY location. (Example: USR^LOC.PULMONARY^SYS^PKG - to look for values for all current user, PULMONARY location, system, or package).

Format is optional and defined as follows:

1) "Q" - returns the value in the quickest manner - internal format

2) "E" - returns external value

3) "B" - returns both values as internal^external

GETLST^XPAR(.List,Entity,Parameter,Format,.Error)

This entry point is similar to $$GET^XPAR, but this will return ALL instances of a parameter. The array passed as List will be returned with all of the possible values assigned to the parameter.

Format variable return descriptions

· "Q" for the quickest value: List(#)=internalinstance^internalvalue

· "E" for the external value: List(#)=externalinstance^externalvalue

· "B" for both internal and external values: List(#,"N")=internalvalue^externalinstance List(#,"V")="internalvalue^externalvalue

· "N" for external instance: List(#,"N")=internalvalue^externalinstance

GETWP^XPAR(.ReturnedText,Entity,Parameter,Instance,.Error)

This call returns word processing text in ReturnedText. ReturnedText itself contains the value field, which is free text that may contain a title, description, etc. The word processing text is returned in ReturnedText(#,0). ReturnedText variable is defined as the name of an array in which you want the text returned. ReturnedText will be set to the title, description, etc. The actual word processing text will be returned in ReturnedText(#,0). Example:

ReturnedText="Select Notes Help"

ReturnedText(1,0)="To select a progress note from the list, "

ReturnedText(2,0)="click on the date/title of the note."

PUT^XPAR(ENT,PAR,INST,VAL,ERR)

This entry point can be called to add or update a parameter instance and bypass the input transforms.

ENVAL^XPAR(.List,Parameter,Instance,.Error)

This entry point will return all parameter instances.

Routine: XPAREDIT

Input Parameter Definitions

Template:
The IEN or NAME of an entry in the Parameter Template file (#8989.52).

ReviewFlag:
There are 2 flags (A and B) that can be used individually, together, or not at all. An 'A' indicates that the new values for the parameters in the template are displayed AFTER the prompting is done. 'B' indicates that the current values of the parameters will be displayed BEFORE editing.

AllEntities:
This is a variable pointer that should be used as the entity for all parameters in the template. If left blank, prompting for the entity is done as defined in the PARAMETER TEMPLATE file.

EN^XPAREDIT

This entry point can be called to prompt the user for a parameter to edit. This is provided more as a tool for developers and not for exported calls as it allows editing of ANY parameter.

TED^XPAREDIT(Template,ReviewFlags,AllEntities)

Allows editing of parameters defined in a template. The parameters in the template are prompted in more of a FileMan style prompt by prompt. No dashed line dividers are displayed between each parameter. Since the dashed line headers are suppressed, it is important to define the VALUE TERM for each parameter in the template, as this is what is used to prompt for the value.

TEDH^XPAREDIT(Template,ReviewFlags,AllEntities)

Same as TED^XPAREDIT call, except that the dashed line headers ARE shown between each parameter.

GETPAR^XPAREDIT(.Variable)

Allow user to select PARAMETER DEFINITION file entry. Returns the value Y in standard DIC look-up format.

GETENT^XPAREDIT(.Entity,Parameter,.OnlyOne?)

Interactively prompts for an entity, based on the definition of a parameter.

Entity
Returns the selected entity in variable pointer format.

Parameter
Specifies the parameter for which an entity should be selected. Parameter should contain two pieces: IEN^DisplayNameOfParameter.

OnlyOne?
Returns "1" if there is only one possible entity for the value. For example, if the parameter can only be set for the system, OnlyOne?=1. If the parameter could be set for any location, OnlyOne?=0.

EDIT^XPAREDIT(Entity,Parameter)

Interactively edits the instance (if multiple instances are allowed) and the value for a parameter associated with a given entity.

Entity
Returns the selected entity in variable pointer format.

Parameter
Specifies the parameter for which an entity should be selected. Parameter should contain two pieces: IEN^DisplayNameOfParameter.

BLDLST^XPAREDIT(.List,Parameter)

This entry point will return, in the array List, all entities allowed for the input Parameter.

List
Name of array to receive output.

Parameter
IEN of entry in the PARAMETER DEFINITION file.
