
Home > Contents

RPC Broker 1.1 Developer's
Guide
Contents

Overview

Components

(listed alphabetically)

TCCOWRPCBroker

TContextorControl

TRPCBroker

TSharedBroker

TSharedRPCBroker

TXWBRichEdit

Classes

(listed alphabetically)

TMult

TParamRecord

TParams

TVistaLogin

TVistaUser

TXWBWinsock

Units

(listed alphabetically)

Hash

LoginFrm

MFunStr

RPCConf1

RpcSLogin

SplVista

TRPCB

TVCEdit

Remote Procedure Calls (RPCs)

Other RPC Broker APIs

Debugging and Troubleshooting

Tutorial

DLL Interface

Home > Overview > Introduction

Introduction: RPC Broker 1.1

The RPC Broker is a client/server system within Department of
Veterans Affairs (VA) Veterans Health Information Systems and
Technology Architecture (VistA) environment. It enables client
applications to communicate and exchange data with VistA M
Servers.

The online help describes the development features of the RPC
Broker. The emphasis is on using the RPC Broker in conjunction with
Delphi software. However, the RPC Broker supports other
development environments.

The online help provides a complete reference for development with
the RPC Broker. For an overview of development with the RPC
Broker components, see the RPC Broker User Guide.

The online help is intended for the VistA development community
and Information Resource Management (IRM) staff. A wider
audience of technical personnel engaged in operating and
maintaining the Department of Veterans Affairs (VA) software might
also find it useful as a reference.

Contents
Broker Overview

Definitions

About this Version of the RPC Broker

What's New in the BDK

Developer Considerations

Application Considerations

Online Help

 REF: For the latest RPC Broker product information, see the
RPC Broker Intranet Website:
redacted

http://vista.med.va.gov/broker/index.asp

Home > Overview > Broker Overview

Broker Overview

The RPC Broker is a bridge connecting the application front-end on
the client workstation (e.g., Delphi-based GUI applications) to the M-
based data and business rules on the VistA M Server.

Client Side of the RPC
Broker

Server Side of RPC the
Broker

Manages the
connection to the client
workstation.

 REF: For details,
see the RPC Broker
Systems Management
Guide.

The RPC Broker
components allow
Delphi-based
applications to make
RPCs to the server.

Manages the
connection to the
client.

 REF: For details,
see the RPC Broker
Systems Management
Guide.

Authenticates client
workstation.

Authenticates user.

Manages RPCs from
the client, executes the

The Broker Dynamic
Link Library (DLL)
provides support for
Commercial-Off-The-
Shelf (COTS)/HOST
client/server software.

M code, and passes
back return values.

The RPC Broker frees GUI developers from the details of the client-
server connection and allows them to concentrate executing
operations on the VistA M Server.

Broker Call Steps

These steps present a basic outline of the events that go into an
RPC Broker call, starting with the initial client-server connection.
Once the client machine and user are authenticated, any number of
calls (Steps #3-5) can occur through the open connection.

GUI developer issues are noted for each step.

1. Authentication of client machine. When a client machine initiates
a session, the Broker Listener on the server spawns a new job.
The server then calls the client back to ensure that the client's
address is accurate.

GUI Developer Issues:

None. This process is built into the RPC Broker.

 REF: For more details, see the RPC Broker Systems
Management Guide.

2. Authentication of user. After the server connects back to the
client machine, the user is asked for an Access and Verify code.

GUI Developer Issues:

http://www.va.gov/vdl/documents/Infrastructure/Remote_Proc_Call_Broker_(RPC)/xwb_1_1_sm.pdf

Creating user context—Applications must create a context
for the user. This process checks the user's access to
individual RPCs associated with the application.

Enabling Silent Login—Developers must decide whether to
enable Silent Login.

3. Client makes a Remote Procedure Call.

GUI Developer Issues:

Connecting to VistA. Developers creating Delphi GUI
applications can use the TRPCBroker or TSharedRPCBroker
components to connect to VistA. For each transaction, the
application must set parameters and execute a call. Issues
include:

Determining data types for input and return.

Determining the kind of call to make.

In addition to the RPC Broker components, other components
are available. The VA FileMan Delphi components (FMDC)
encapsulate the details of retrieving, validating, and updating VA
FileMan data within a Delphi-based application.

 REF: For more information on the VA FileMan Delphi
Components (FMDC), see the FMDC VA Intranet Website:
redacted

http://vista.med.va.gov/fmdc/index.asp

In the future, components may become available to encapsulate
other VistA functions.

4. RPC execution on server.

GUI Developer Issues:

A Remote Procedure Call (RPC) is a defined call to M code that
runs on a VistA M Server.

 REF: For details, see the "RPCs" topic.

Issues include:

Determining the best RPC—The BDK provides some RPC
BROKER APIs.

Creating RPCs from scratch— In many cases, an existing
M API can be wrapped into an RPC.

Registering RPCs—RPCs must be registered on the server,
so users of the GUI VistA application have access to them.

 REF: For more information on registering RPCs, see
the "RPC Security: How to Register an RPC" topic.

5. RPC returns information to the client.

GUI Developer Issues:

Handling the return values, including any error messages.

Home > Overview > Definitions

Definitions

The RPC Broker BDK includes:

Units
Classes

Objects

Components

Types

Methods

Routines, Functions, and Procedures

For each Class, Object, and Component, this manual lists the unit,
declaration, properties, methods, and a description of how to use the
class, object, or component.

Some types and properties are public, some are private, and some
are available only within the function or procedure in which they are
defined:

Unit

Interface {specifies that this unit is an interface to a class}

Uses

{list of external units being referenced within this unit}

Type

{Class definition}

Private

{private (available within this unit) variable, type, property,
method, function, and procedure definitions}

Public

{published (available to units using this unit) Variable, type,
property, method, function, and procedure definitions}

Implementation

{Method, Function, and Procedure programming, which can
contain their own Uses, Type, and property definitions within
themselves}

Units

A Unit is a Pascal source-code file (e.g., winsockc.pas in the BDK)
containing all of the other elements. It is sometimes called a
"program;" however, that can be misleading as a working program
can contain or reference many units. For example, the BDK is not
really a standalone program, but the units in the BDK are compiled
with an application (e.g., Computerized Patient Record System
[CPRS]) to make a program. The interfaces to those units are called
components (well defined and published to be used externally). For
example, the wsockc unit in the BDK uses (references) other
external units (i.e., BDK and Delphi Run Time Library: AnsiStrings,
SysUtils, WinSock2, XWBBut1, WinProcs, WinTypes, Classes,
Dialogs, Forms, Controls, StdCtrls, ClipBrd, TRPCB, RpcbErr) to
make the functions and procedures in those units available to
wsockc.

Sometimes it is helpful to know in which unit a particular item, such
as a type or routine, is declared in the BDK. This is because if you
use the item in your own code, you may need to include the
corresponding unit in your own Pascal unit's Uses clause.

 NOTE: This Help file documents some of the units provided, and
details what parts of the BDK are declared in each unit.

Classes

A class is a data type that wraps up code and data all in one bundle.

Objects

An object is a specific instance of that class with associated values.

Components

In Embarcadero Delphi, the term "component" is used to describe
elements of a unit, function, procedure, etc.

 REF: For a more detailed description, see the Embarcadero
Delphi for Windows User Guide.

The RPC Broker and associated documentation uses a more
common definition for a "component." A "component" is something
bigger than a unit; basically a small program that can be embedded
into a larger program. In this case, a component is an object with
additional properties, methods, and events that makes it suitable for
specialized purposes. A component may or may not be visible.

Types

A type defines the possible range of values for a property or a
method. A number of types are declared in the BDK, which you may
need to make use of in the code. Some types and properties are
public, some are private, and some are available only within the
function or procedure in which they are defined.

 NOTE: For topics in this Help file describing types, the unit and
declaration for each type, as well as a description of the type is also
provided.

Methods

Delphi's definition: "A method uses the same calling conventions as
ordinary procedures and functions, except that every method has an
additional implicit parameter "Self", which is a reference to the
instance or class in which the method is called. For example, clicking
on a button invokes a method which changes the properties of the
button."

Routines, Functions, and Procedures

Routines can either be functions or procedures. A function returns a
value, and a procedure does not.

In Delphi, routine is the generic term. It is not the same as a VistA M
routine. In M, a routine is the file containing everything else,
including functions and procedures. In Delphi, that would be called a
Unit.

 NOTE: For topics in this Help file describing routines, the unit
and declaration for each routine is listed, as well as a description of
the routine is provided.

Home > Overview > About this Version of the RPC Broker

About this Version of the RPC
Broker

RPC Broker 1.1 provides developers with the capability to develop
new VistA Client/Server software using the following RPC Broker
Delphi components in a 32-bit environment:

TCCOWRPCBroker

TContextorControl

TRPCBroker (original component)

TSharedBroker

TSharedRPCBroker

TXWBRichEdit

 REF: For a complete list of patches released with RPC Broker
1.1, see the National Patch Module (NPM) on FORUM.

To develop VistA applications in a 32-bit environment you must have
Delphi XE2 or greater. This version of the RPC Broker does not

allow you to develop new applications in Delphi 1.0 (16-bit
environment). However, the RPC Broker routines on the VistA M
Server continue to support VistA applications previously developed
in the 16-bit environment.

The default installation of the RPC Broker creates a separate Broker
Development Kit (BDK) directory (i.e., BDK32) that contains the
required RPC Broker files for development.

 CAUTION: This statement defines the extent of support
relative to use of Delphi. The Office of Information and
Technology (OIT) only supports the Broker Development Kit
(BDK) running in the currently offered version of Delphi and the
immediately previous version of Delphi. This level of support
became effective 06/12/2000.

Sites may continue to use outdated versions of the RPC Broker
Development Kit but do so with the understanding that support
is not available and that continued use of outdated versions do
not afford features that can be essential to effective
client/server operations in the VistA environment. An archive of
old (no longer supported) Broker Development Kits is
maintained in the VA Intranet Broker Archive.

What's New in the BDK

Here is What's New Through March
2014

This topic highlights some of the major changes made to the RPC
Broker 1.1, since its original release (patch references are included
where applicable):

Classes Added

Components Added

Design-time and Run-time Packages

Functionality Added

Library Methods

Added

Modified

Properties Added

Source Code Availability

Types Added/Modified

Classes Added

As of RPC Broker Patches XWB*1.1*13, the following Classes were
added:

TVistaLogin

TVistaUser

As of RPC Broker Patches XWB*1.1*40, the following Class was
added:

TXWBWinsock

Components Added or Modified:

As of RPC Broker Patch XWB*1.1*50, the following RPC Broker
components were added or modified:

TRPCBroker

Modified the TRPCBroker component in RPC Broker 1.1. The
RPC Broker wraps CCOW User Context into the primary
TRPCBroker component so that if the Contextor property is set,
then CCOW User Context is used. This means that there is no
longer a need to have the separate TCCOWRPCBroker
component.

 NOTE: All of the functionality used by and for the
TCCOWRPCBroker component is still present, but it is now part
of the regular TRPCBroker component.

As of RPC Broker Patch XWB*1.1*40, the following RPC Broker
components were added or modified:

TCCOWRPCBroker

Added the TCCOWRPCBroker component to RPC Broker 1.1.
This component allows applications to be CCOW-enabled and

Single Sign-On/User Context (SSO/UC)-aware.

TContextorControl

Added the TContextorControl component to RPC Broker 1.1.
The TContextorControl Delphi component communicates with
the Vergence Locator service.

As of RPC Broker Patch XWB*1.1*26, the following RPC Broker
components were added or modified:

TSharedBroker

Added the TSharedBroker component to RPC Broker 1.1. This
component allows applications to share a single Broker
connection.

TSharedRPCBroker

Added the TSharedRPCBroker component to RPC Broker 1.1.
This component allows applications to share a single Broker
connection.

As of RPC Broker Patch XWB*1.1*13, the following RPC Broker
components were added or modified:

TXWBRichEdit

Added the TXWBRichEdit component to RPC Broker 1.1. This
component replaced the Introductory Text Memo component on
the Login Form. It permits URLs to be identified and launched.

Design-time and Run-time Packages

As of RPC Broker Patch XWB*1.1*14, the BDK contains separate
run-time and design-time packages.

 REF: For details and compiling instructions, see the "Developer
Considerations" topic.

Functionality Added

As of RPC Broker Patch XWB*1.1*50, the following RPC Broker 1.1
functionality was added or modified:

Support for Later Delphi Versions—BDK supports Delphi
XE5, XE4, XE3, and XE2.

Supports Secure Shell (SSH)—The TRPCBroker component
enabled Secure Shell (SSH) Tunnels to be used for secure
connections. This functionality is controlled by setting an internal
property value (mandatory SSH) or command line option at run
time. Support is provided for the Attachmate® Reflections
terminal emulator software using SSH tunneling for clients within
the VA, and support is provided for PuTTY Link (Plink) for
secure channels for clients outside the VA.

Supports Broker Security Enhancement (BSE)—The
TRPCBroker component enabled visitor access to remote sites
using authentication established at a home site.

As of RPC Broker Patch XWB*1.1*40, the following RPC Broker 1.1
functionality was added or modified:

Supports Single Sign-On/User Context (SSO/UC)—As of
RPC Broker Patch XWB*1.1*40, the TCCOWRPCBroker

component enabled Single Sign-On/User Context (SSO/UC) in
CCOW-enabled applications.

 REF: For more information on SSO/UC, see the Single
Sign-On/User Context (SSO/UC) Installation Guide and Single
Sign-On/User Context (SSO/UC) Deployment Guide on the VA
Software Document Library (VDL).

As of RPC Broker Patch XWB*1.1*35, the following RPC Broker 1.1
functionality was added or modified:

Supports Non-Callback Connections—The RPC Broker
components are built with a UCX or non-callback Broker
connection, so that it can be used from behind firewalls, routers,
etc. This functionality is controlled via the TRPCBroker
component IsBackwardCompatibleConnection property.

As of RPC Broker Patch XWB*1.1*13, the following RPC Broker 1.1
functionality was added or modified:

Supports Silent Login—The RPC Broker provides "Silent
Login" capability. It provides functionality associated with the
ability to make logins to a VistA M Server without the RPC
Broker asking for Access and Verify code information.

Documented Deferred RPCs and Capability to Run RPCs on
a Remote Server:

Running RPCs on a Remote Server

Deferred RPCs

Multi-instances of the RPC Broker—The RPC Broker code
was modified to permit an application to open two separate
Broker instances with the same Server/ListenerPort
combination, resulting in two separate partitions on the server.
Previously, an attempt to open a second Broker instance ended
up using the same partition. For this capability to be useful for
concurrent processing, an application would have to use threads
to handle the separate Broker sessions.

 CAUTION: Although there should be no problems, the
RPC Broker is not yet guaranteed to be thread safe.

Operates in a 32-bit Microsoft® Windows environment.

Library Methods

Added

As of RPC Broker Patch XWB*1.1*40, the following library
methods were added to the TCCOWRPCBroker component:

GetCCOWtoken

function GetCCOWtoken(Contextor: TContextorControl):
string;

IsUserCleared

function IsUserCleared: Boolean;

IsUserContextPending

function
IsUserContextPending(aContextItemCollection:
IContextItemCollection): Boolean;

WasUserDefined

function WasUserDefined: Boolean;

As of RPC Broker Patch XWB*1.1*13, the following library
methods were added to the TVCEdit Unit:

ChangeVerify

function ChangeVerify(RPCBroker: TRPCBroker):
Boolean;

SilentChangeVerify

function SilentChangeVerify(RPCBroker: TRPCBroker;
OldVerify, NewVerify1, NewVerify2: String; var
Reason: String): Boolean;

StartProgSLogin

procedure StartProgSLogin(const ProgLine: String;
ConnectedBroker: TRPCBroker);

Modified

As of RPC Broker Patch XWB*1.1*13, the following library
methods were modified:

CheckCmdLine

function CheckCmdLine(SLBroker: TRPCBroker):
Boolean;

Changed from procedure to function with a Boolean return
value.

GetServerInfo

The GetServerInfo function in the RpcConf1 unit, which can
be used to select the desired Server name and
ListenerPort, was modified to add a new button. This button
can be used to add a new Server/ListenerPort combination
to those available for selection. It also accepts and stores a
valid IP address, if no name is known for the location. This
permits those who have access to other Server/ListenerPort
combinations that may not be available in the list on the
current workstation to access them. However, they still
need a valid Access and Verify code to log on to the added
location.

TParams

The procedure Clear was moved from Private to Public.

TRPCB Unit

TOnLoginFailure = procedure (VistaLogin:
TVistaLogin) of object;

Changed from Object: TObject, since this is what should be
expected by the procedure if it is called.

TOnRPCBFailure = procedure (RPCBroker: TRPCBroker)
of object;

Changed from Object: TObject, since this is what should be
expected by the procedure if it is called.

Properties Added

As of RPC Broker Patch XWB*1.1*40, the following Properties
were added to or modified (listed by component/class):

TCCOWRPCBroker Properties

The following TCCOWRPCBroker component properties
were added:

CCOWLogonIDName (Public)

CCOWLogonIDValue (Public)

CCOWLogonName (Public)

CCOWLogonNameValue (Public)

CCOWLogonVpid (Public)

CCOWLogonVpidValue (Public)

Contextor (Public)

TVistaLogin Properties

The following TVistaLogin class properties were added:

DomainName (Public)

IsProductionAccount (Public)

TVistaUser Property

The following TVistaUser class properties were added:

Vpid (Public)

As of RPC Broker Patches XWB*1.1*13 and 35, the following
Properties were added to or modified (listed by
component/class):

TRPCBroker Properties

The following TRPCBroker component properties were
added:

BrokerVersion (Public)

CurrentContext (Public)

IsBackwardCompatibleConnection (Published)

IsNewStyleConnection (Public)

KernelLogIn (Published)

LogIn (Public)

OldConnectionOnly (Published)

OnRPCBFailure (Public)

RPCBError (Public)

ShowErrorMsgs (Published)

User (Public)

As of RPC Broker Patch XWB*1.1*23, the following Properties
were added to or modified (listed by component/class):

TSharedBroker and TSharedRPCBroker Properties

The following TSharedBroker and TSharedRPCBroker
component properties were added:

AllowShared (Public)

OnConnectionDropped (Public)

OnLogout (Published)

Source Code Availability

As of RPC Broker Patch XWB*1.1*14, the BDK contains the
Broker source code. The source code is located in the
..\BDK32\Source directory.

 CAUTION: Modified BDK source code should not be
used to create VistA GUI applications. For more details, see
the "Developer Considerations" topic.

Not all methods and properties found in the source code
are documented at this time. Only those documented
methods and properties are guaranteed to be made
backwards compatible in future versions of the BDK.

Types Added/Modified

As of RPC Broker Patch XWB*1.1*13 and XWB*1.1*40, the
following Types were added or modified:

TLoginMode

TShowErorMsgs

TOnLoginFailure

TOnRPCBFailure

TParamType

Home > Overview > Developer Considerations

Developer Considerations

Source Code

As of RPC Broker Patch XWB*1.1*14, the RPC Broker source code
was released. The release of the source code does not affect how a
developer uses the Broker Components or other parts of the BDK.

 CAUTION: Modified BDK source code should not be used to
create VistA GUI applications.

Suggestions for changes (bugs and enhancements to the BDK
should be done via the Remedy Request Action support system for
review and possible inclusion in a future patch.

The source code is located in the ..\BDK32\Source directory.

Design-time and Run-time Packages

As of RPC Broker Patch XWB*1.1*14, the BDK has separate run-
time and design-time packages. There is no longer a VistA Broker
package. The new packages are XWB_DXEn and XWB_RXEn,
where "D" means Design-time and "R" means Run-time and where
"XEn" is the Delphi version with which it should be used (e.g.,
XWB_DXE5 is the design-time package for Delphi XE5). The run-
time package should not be used to create executables that depend
on a separate XWB_RXEn.bpl installed on client workstations. There
is no procedure in place at this time to reliably install the correct
version of the run-time bpl on client workstations.

 CAUTION: Do not compile your project so that it relies on
dynamic linking with the BDK's run-time package; that is, do
not check the "Build with runtime packages" box on the
"Packages" tab of the "Project Options' dialogue.

Resource Reuse

Developers should be aware of existing resources that may be of
use. These resources may be available nationally or through a
particular project. Possibilities include:

Delphi components such as the VA FileMan Delphi components
(FMDC).

 REF: For more information on the VA FileMan Delphi
components (FMDC), see the FMDC VA Intranet website:
redacted

RPC BROKER APIs

Existing M APIs

http://vista.med.va.gov/fmdc/index.asp

Component Connect-Disconnect
Behavior

Connect

The first time one of the Broker components in your application
connects, it establishes an actual connection with the server. The
connection record is added to the list of all active connections for
your application. This list is internal to the application and is
completely under the control of the Broker component and is
transparent to you. If another Broker component tries to connect to
the same server/port, the existing connection record is found in the
list and its socket is shared. The new connection is also added to
this list. This process is repeated with each connection request.

Disconnect

When a Broker component disconnects, its connection record is
removed from the internal list of active connections. If it happens to
be the last record for the particular server/port combination, the
connection is actually closed. This scheme provides the illusion of
multiple connections without "clogging up" the server.

Home > Overview > Application Considerations

Application Considerations

Application Version Numbers

There may be a need to set or pass application version numbers.
The suggested format is as follows:

VersionNumber_PatchNumber(3 digits)

For example, Patch 22 of Version 8.2 would be formatted as follows:

8.2_022

Deferred RPCs

In order to increase efficiency, applications can run RPCs in the
background.

Remote RPCs

In order to work with patient data across sites, applications can run
RPCs on a remote server.

Blocking RPCs

Applications can install RPCs that should be used only in certain
contexts. It is possible to block access to an RPC.

Silent Login

In special cases, applications can use one of two types of Silent
Login to log in users without the RPC Broker prompting for login
information.

Home > Overview > Online Help

Online Help

Distribution of the BDK includes online help, which provides an
overview of development with the RPC Broker (e.g., components,
properties, methods, etc.).

The help is distributed in two zip files:

Broker_1_1.zip (i.e., Broker_1_1.chm)—This zip file contains
the standalone online HTML help file. Unzip the contents and
double-click on the Broker_1_1.chm file to open the help.

Broker_1_1-HTML_Files.zip—This zip file contains the
associated HTML help files. Unzip the contents in the same
directory and double-click on the index.htm file to open the
help.

 NOTE: You may want to make an entry for Broker_1_1.chm in
Delphi's Tools Menu, to make it easily accessible from within Delphi.
To do this, use Delphi's Tools | Configure Tools option and create a
new menu entry.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TCCOWRPCBroker
Component

 TCCOWRPCBroker
Component

Properties
Methods

Example

Parent Class

TRPCBroker = class(TComponent)

Unit

CCOWRPCBroker.pas

Description

The TCCOWRPCBroker component (CCOWRPCBroker.pas) is
derived from the existing TRPCBroker component. The
TCCOWRPCBroker component (Trpcb.pas) allows VistA application
developers to make their applications CCOW-enabled and Single
Sign-On/User Context (SSO/UC)-aware with all of the client/server-
related functionality in one integrated component. Using the
TCCOWRPCBroker component, an application can share User
Context stored in the CCOW Context Vault.

When a VistA CCOW-enabled application is recompiled with the
TCCOWRPCBroker component and other required code
modifications are made, that application becomes SSO/UC-aware
and capable of single sign-on (SSO).

 REF: For more detailed information on the application developer
procedures and code modifications needed to make CCOW-enabled
RPC Broker-based applications SSO/UC aware, see the "RPC
Broker-based Client/Server Applications" topic in the "Making VistA
Applications SSO/UC-aware" chapter in the Single Sign-On User
Context (SSO/UC) Deployment Guide.

 NOTE: Properties inherited from the parent component (i.e.,
TComponent) are not discussed in this Help file (only those
properties added to the parent component are described). For help

on inherited properties, see Delphi's documentation on the parent
component (i.e., TComponent).

 REF: For help on inherited properties, see the parent
component (i.e., TRPCBroker).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TCCOWRPCBroker
Example

TCCOWRPCBroker Example

For examples, see the Samples directory on the use of the
TCCOWRPCBroker component: located in the
 ..\BDK32\Samples\CCOWRPCBroker directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TContextorControl
Component

 TContextorControl
Component

As of RPC Broker Patch XWB*1.1*40, the TContextorControl
component was added to RPC Broker 1.1. The TContextorControl
Delphi component communicates with the Vergence Locator service.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TRPCBroker Component

 TRPCBroker Component
Properties
Methods

Example

Parent Class

TRPCBroker = class(TComponent)

Unit

TRPCB

Description

The TRPCBroker component provides Delphi developers with an
easy, object-based access to the Broker. It is compatible with the
Delphi object oriented (OO) environment. This component, when
placed on a Delphi form, allows applications to connect to the VistA
M Server and reference M data within Delphi's Integrated
Development Environment (IDE). It makes a Delphi form and
everything on it "data aware."

The TRPCBroker component (Trpcb.pas) provides VistA application
developers with all of the client/server-related functionality in one
integrated component. Using the TRPCBroker component, an
application can connect to the VistA M Server by simply setting the
Connected property to True. Remote procedures on the server can
be executed by preparing the Param and RemoteProcedure
properties and invoking any of the following methods:

Call

strCall

lstCall

The TRPCBroker component can be found on the Kernel tab in the
component palette.

 NOTE: Properties inherited from the parent component (i.e.,
TComponent) are not discussed in this Help file (only those
properties added to the parent component are described). For help
on inherited properties, see Delphi's documentation on the parent
component (i.e., TComponent).

Support for Secure Shell (SSH)
Tunneling

As of RPC Broker Patch XWB*1.1*50 support was added for a
Secure Shell (SSH) tunneling service to provide secure data transfer
between the client and the VistA M Server.

The Attachmate® Reflections terminal emulator software with SSH
tunneling is used inside the VA to provide secure data transfer
between the client and the VistA M Server. SSH tunneling is also
supported for PuTTY Link (Plink) for those using VistA outside of the
VA.

For SSH tunneling using Attachmate® Reflection, "SSH" is set as a
command line option or as a property within the application (set to
Attachmate® Reflection). SSH is set to True if either of the following
command line parameters are set:

SSHPort=portnumber (to specify a particular port number—If
not specified, it uses the port number for the remote server).

SSHUser=username (for the remote server, where username is
of the form xxxvista, where the xxx is the station's three letter
abbreviation).

For SSH tunneling using Plink.exe, "PLINK" is set as a command
line option or as a property within the application (set to Plink). SSH

is set to True if the following command line parameter is set:

SSHPort=portnumber

Support for Broker Security
Enhancement (BSE)

As of RPC Broker Patch XWB*1.1*50, the RPC Broker supports the
Broker Security Enhancement (BSE). The TRPCBroker component
was modified to enable visitor access to remote sites using
authentication established at a home site.

CCOW User Context Wrapped into the
Primary TRPCBroker Component

As of RPC Broker Patch XWB*1.1*50, the RPC Broker wraps CCOW
User Context into the primary TRPCBroker component so that if the
Contextor property is set, then CCOW User Context is used. This
means that there is no longer a need to have the separate
TCCOWRPCBroker component.

 NOTE: All of the functionality used by and for the
TCCOWRPCBroker component is still present, but it is now part of
the regular TRPCBroker component.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TRPCBroker Example

TRPCBroker Example

The following example demonstrates how a TRPCBroker component
can be used to:

1. Connect to the VistA M Server.

2. Execute various remote procedures.

3. Return the results.

4. Disconnect from the server.

This example assumes that a TRPCBroker component already
exists on the form as brkrRPCBroker1:

procedure TForm1.Button1Click(Sender: TObject);
begin
 try
 {connect to the server}
 brkrRPCBroker1.Connected := True;
 //assign RPC name
 brkrRPCBroker1.RemoteProcedure := 'SOME APPLICATION
RPC';
 {make the call}
 brkrRPCBroker1.Call;
 {display results}
 ListBox1.Items := brkrRPCBroker1.Results;
 {disconnect from the server}
 brkrRPCBroker1.Connected := False;
 except
 //put error handling code here
 end;
end;

 REF: For more examples, see the Samples directory on the use
of the TRPCBroker component located in the
..\BDK32\Samples\RPCBroker directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TSharedBroker
Component

 TSharedBroker Component
Properties
Example

Parent Class

TSharedBroker = class(TComponent)

Unit

TRPCB

Description

The TSharedBroker component is derived from the existing
TRPCBroker component. The TSharedBroker component provides
applications or plugins to applications easy access to an RPCBroker
without the need for a separate M partition. Each component has its
own security (i.e., option) as well. The default value of the
AllowShared property is True. If an application has RPCs that
require extensive time, it would be best to not share a Broker
instance and the AllowShared property should then be set to False.

For its functionality, the TSharedBroker component uses the
RPCSharedBrokerSessionMgr.EXE, which is an out of process
Common Object Module (COM) component. This executable
handles the actual Broker connections and communication,
permitting multiple applications to use a single connection and
partition to the VistA M Server. However, it also handles connections
of different applications to different Server/Port combinations and
can handle multiple connections to a specific Server/Port
combination, if an application sets AllowShared property to False.

Like the TRPCBroker, the TSharedBroker component and
RPCSharedBrokerSessionMgr executable provide VistA application
developers with all of the client/server-related functionality in one
integrated component. Using the TSharedBroker component, an
application can connect to the VistA M Server by simply setting the
Connected property to True. Remote procedures on the server can
be executed by preparing the Param and RemoteProcedure
properties and invoking any of the following methods:

Call

strCall

lstCall

Using the TSharedBroker Component

To use the TSharedBroker component in place of the TRPCBroker
component with an existing application, do the following:

1. Open the application.

2. Notate the current name assigned to the TRPCBroker
component.

3. Remove the TRPCBroker component.

4. Add the TSharedBroker component and give it the same name
that was used for the TRPCBroker component (see Step #2).

5. If you do not have any other components (e.g., FileMan Delphi
Components) that reference the original TRPCBroker
component (see Step #2), simply recompile and run the
application. Otherwise, proceed to Step #6.

6. If you have components (e.g., FMLister, FMGets, etc.) that
reference the original TRPCBroker component, do the following:

a. Click on the components.

b. Select the new TSharedBroker component at the
TRPCBroker reference for this component in the object

inspector. The assignment is not by name but to the actual
component instance or location in memory at the time, and
this has to be reset.

c. Repeat Steps #6a-6b for each additional component.

d. Recompile and run the application.

 NOTE: Application developers must remember to include the
RPCSharedBrokerSessionMGR.EXE when building their
applications.

When the first application connects, you see an instance of the
RPCSharedBrokerSessionMgr appear in the taskbar. All Broker
connections via the TSharedBroker component are routed through
this executable.

 REF: For help on inherited properties, see the parent
component (i.e., TRPCBroker).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TSharedBroker Example

TSharedBroker Example

The following example demonstrates how a TSharedBroker
component can be used to:

1. Connect to the VistA M Server.

2. Execute various remote procedures.

3. Return the results.

4. Disconnect from the server.

This example assumes that a TSharedBroker component already
exists on the form:

procedure TForm1.Button1Click(Sender: TObject);
var
 i: Integer;
begin
 try
 if not SharedBroker1.Connected then
 SharedBRoker1.Connected := True; {connect to the
server}
 //assign RPC name
 SharedBroker1.RemoteProcedure := 'SOME APPLICATION
RPC';
 SharedBroker1.Call; {make the call}
 for i=0 to Pred(SharedBroker1.Results.Count) do
 ListBox1.Items.Add(SharedBroker1.Results[i]);
 {display results}
 except
 //put error handling code here
 end;
end;

 REF: For more examples, see the Samples directory on the use
of the TSharedBroker component located in the
..\BDK32\Samples\SharedRPCBroker directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TSharedRPCBroker
Component

 TSharedRPCBroker
Component

Properties
Example

Parent Class

TSharedRPCBroker = class(TComponent)

Unit

TRPCB

Description

The TSharedRPCBroker component is derived from the existing
TRPCBroker component. The TSharedRPCBroker component
provides applications or plugins to applications easy access to an
RPCBroker without the need for a separate M partition. Each
component has its own security (i.e., option) as well. The default
value of the AllowShared property is True. If an application has
RPCs that require extensive time, it would be best to not share a
Broker instance and the AllowShared property should then be set to
False.

For its functionality, the TSharedRPCBroker component uses the
RPCSharedBrokerSessionMgr.EXE, which is an out of process
Common Object Module (COM) component. This executable
handles the actual Broker connections and communication,
permitting multiple applications to use a single connection and
partition to the VistA M Server. However, it also handles connections
of different applications to different Server/Port combinations and
can handle multiple connections to a specific Server/Port
combination, if an application sets AllowShared property to False.

Like the TRPCBroker, the TSharedRPCBroker component and
RPCSharedBrokerSessionMgr executable provide VistA application
developers with all of the client/server-related functionality in one
integrated component. Using the TSharedRPCBroker component, an
application can connect to the VistA M Server by simply setting the
Connected property to True. Remote procedures on the server can
be executed by preparing the Param and RemoteProcedure
properties and invoking any of the following methods:

Call

strCall

lstCall

Using the TSharedRPCBroker
Component

To use the TSharedRPCBroker component in place of the
TRPCBroker component with an existing application, do the
following:

1. Open the application.

2. Notate the current name assigned to the TRPCBroker
component.

3. Remove the TRPCBroker component.

4. Add the TSharedRPCBroker component and give it the same
name that was used for the TRPCBroker component (see Step
#2).

5. If you do not have any other components (e.g., FileMan Delphi
Components) that reference the original TRPCBroker
component (see Step #2), simply recompile and run the
application. Otherwise, proceed to Step #6.

6. If you have components (e.g., FMLister, FMGets, etc.) that
reference the original TRPCBroker component, do the following:

a. Click on the components.

b. Select the new TSharedRPCBroker component at the
TRPCBroker reference for this component in the object
inspector. The assignment is not by name but to the actual
component instance or location in memory at the time, and
this has to be reset.

c. Repeat Steps #6a-6b for each additional component.

d. Recompile and run the application.

 NOTE: Application developers must remember to include the
RPCSharedBrokerSessionMGR.EXE when building their
applications.

When the first application connects, you see an instance of the
RPCSharedBrokerSessionMgr appear in the taskbar. All Broker
connections via the TSharedRPCBroker component are routed
through this executable.

 REF: For help on inherited properties, see the parent
component (i.e., TRPCBroker).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TSharedRPCBroker
Example

TSharedRPCBroker Example

The following example demonstrates how a TSharedRPCBroker
component can be used to:

1. Connect to the VistA M Server.

2. Execute various remote procedures.

3. Return the results.

4. Disconnect from the server.

This example assumes that a TSharedRPCBroker component
already exists on the form:

procedure TForm1.Button1Click(Sender: TObject);
var
 i: Integer;
begin
 try
 if not SharedRPCBroker1.Connected then
 SharedRPCBRoker1.Connected := True; {connect to the
server}
 //assign RPC name
 SharedRPCBroker1.RemoteProcedure := 'SOME APPLICATION
RPC';
 SharedRPCBroker1.Call; {make the call}
 for i=0 to Pred(SharedRPCBroker1.Results.Count) do
 ListBox1.Items.Add(SharedRPCBroker1.Results[i]); {d
isplay results}
 except
 //put error handling code here
 end;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Components and Examples > TXWBRichEdit
Component

 TXWBRichEdit Component

Property

Parent Class

TXWBRichEdit = class(TComponent)

Unit

XwbRich20

Description

The TXWBRichEdit component replaces the Introductory Text Memo
component on the Login Form. TXWBRichEdit (XwbRich20.pas) is a
version of the TRichEdit component that uses Version 2 of
Microsoft's RichEdit Control and adds the ability to detect and
respond to a Uniform Resource Locator (URL) in the text. This
component permits developers to provide some requested
functionality on the login form. As an XWB namespaced component,
it was required to be put on the Kernel tab of the component palette;
however, it rightly belongs on the Win32 tab.

 NOTE: Properties inherited from the parent component (i.e.,
TComponent) are not discussed in this Help file (only those
properties added to the parent component are described). For help
on inherited properties, refer to Delphi's documentation on the parent
component (i.e., TComponent).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Classes > TMult Class

TMult Class
Properties
Methods

Example

Unit

TRPCB

Description

The TMult class is used whenever a list of multiple values needs to
be passed to a remote procedure call (RPC) in a single parameter.
The Mult property of a parameter is of TMult type. The information
put in the TMult variable is really stored in a TStringList, but the
access methods (used to read and write) take strings as subscripts
and provide the illusion of a string-subscripted array.

It is important to note that items in a TMult class may or may not be
sorted. If the Sorted property is:

False (default)—Items are stored in the order they are added.

True—Items are stored in ascending alphabetical order by
subscripts.

If you attempt to reference an element by a nonexistent subscript
you get an error in the form of a Delphi exception. Do not forget that
M syntax dictates that all strings must be surrounded by double
quotes. So, if your goal is to pass a string subscripted array of
strings using TMult as a parameter to an RPC on the VistA M Server,
do not forget to surround each of the subscripts and their associated
values with double quotes ("). Otherwise, M assumes that you are
passing a list of variables and attempts to reference them, which is
probably not what you want.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Classes > TParamRecord Class

TParamRecord Class
Properties
Example

Unit

TRPCB

Description

The TParamRecord class is used to hold all of the information on a
single RPC parameter. Depending on the type of the parameter
needed, different properties are used. The PType property is always
used to let the Broker on the VistA M Server know how to interpret
the parameter. For a single value parameter, the Value property
should be used. In the case of a list or a word-processing text, use
the Mult property.

The TParamRecord relationship to the TRPCBroker component is as
follows:

The TRPCBroker component contains the Param property (i.e.,
TParams class).

The TParams class contains the ParamArray property (array
[I:integer]: TParamRecord class).

The TParamRecord class contains the Mult property (i.e.,
TMult class).

The TMult class contains the MultArray property
(array[S: string]: string).

The MultArray property internally uses a TStringList in
which each element's object is a TString.

 CAUTION: Developers should rarely need to use
TParamRecord by itself in their code. TParamRecord is the type
of the elements in the ParamArray, default array property of the
TRPCBroker component Param property. This means that when
you are working with a Param[x] element, you are in reality
working with an instance of TParamRecord.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Classes > TParams Class

TParams Class
Property
Method

Example

Unit

TRPCB

Description

The TParams class is used to hold parameters (i.e., array of
TParamRecord) used in a remote procedure call (RPC). You do not
need to know in advance how many parameters you need or allocate
memory for them; a simple reference or an assignment to a
parameter creates it.

The Clear procedure can be used to remove/clear data from
TParams.

 NOTE: Previously, this procedure was Private, but as of Patch
XWB*1.1*13, it was made Public.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Classes > TVistaLogin Class

TVistaLogin Class
Properties
Example

Unit

TRPCB

Description

The TVistaLogin class is used to hold login parameters for Silent
Login.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Classes > TVistaUser Class

TVistaUser Class

Properties

Unit

TRPCB

Description

The TVistaUser class is used to hold parameters related to the
current user. These parameters are filled in as part of the login
procedure.

 NOTE: This class is used as a property by the TRPCBroker
class. This property, with its associated data, is available to all
applications, whether or not they are using a Silent Login.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Classes > TXWBWinsock Class

TXWBWinsock Class

Unit

TRPCB

Description

The code handling connections and transmission was moved into
the TXWBWinsock class, which is defined in wsockc.pas. It
facilitates the ability for making and maintaining multiple independent
RPC Broker connections. To get around cyclic issues with the Using
clause, XWBWinsock within Trpcb.pas is defined as TObject and
must be cast to TXWBWinsock when it is used.

The methods in the wsockc.pas unit were originally library methods
or methods not associated with a class. To ensure that the
TCCOWRPCBroker component is thread-safe (i.e., thread safe
operation of RPC Broker instances created in different threads), it
became necessary for each instance of the TRPCBroker to have its
own instance of these methods, values, etc. Thus, the
TXWBWinsock class was created to encapsulate the Public
members.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Units > Hash Unit

Hash Unit

Library Methods

Encrypt

Decrypt

 REF: To see a listing of items declared in this unit including their
declarations, use the ObjectBrowser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Units > LoginFrm Unit

LoginFrm Unit

As of Patch XWB*1.1*13, a "Change VC" check box was added to
the to the login form. The user can use this check box to indicate that
she/he wants to change their Verify code. If this box has been
checked, after the user has completed logging in to the system, the
Change Verify code dialogue is displayed.

 REF: To see a listing of items declared in this unit including their
declarations, use the ObjectBrowser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Units > MFunStr Unit

MFunStr Unit

Library Methods
piece
translate

 REF: To see a listing of items declared in this unit including their
declarations, use the ObjectBrowser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Units > RPCConf1 Unit

RPCConf1 Unit

Library Methods
GetServerInfo
GetServerIP

 REF: To see a listing of items declared in this unit including their
declarations, use the ObjectBrowser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Units > RpcSLogin Unit

RpcSLogin Unit

Library Methods
CheckCmdLine
StartProgSLogin

 REF: To see a listing of items declared in this unit including their
declarations, use the ObjectBrowser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Units > SplVista Unit

SplVista Unit

Library Methods
SplashOpen
SplashClose

 REF: To see a listing of items declared in this unit including their
declarations, use the ObjectBrowser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Units > TRPCB Unit

TRPCB Unit

The TRPCB unit contains the declarations for the various RPC
Broker components.

When you add a component declared in this unit to a form, the unit is
automatically added to the uses clause of that form's unit.

The following items are automatically declared in the uses clause:

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
Controls, Forms, Dialogs

Classes
TMult
TParamRecord

TParams

TVistaLogin

TVistaUser

Component

TRPCBroker

Library Methods
GetAppHandle

TMult Class Methods

TParams Class Method

TRPCBroker Component Methods

Types
EBrokerError

TloginMode

TParamType

 REF: To see a listing of items declared in this unit including their
declarations, use the ObjectBrowser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Units > TVCEdit Unit

TVCEdit Unit

The RPC Broker calls the TVCEdit unit at logon when users must
change their Verify code (i.e., Verify code has expired). There is also
a check box on the Signon form that allows uses to change their
Verify code at any time.

Library Methods
ChangeVerify
SilentChangeVerify

 REF: To see a listing of items declared in this unit including their
declarations, use the ObjectBrowser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Assign Method (TMult Class)

Assign Method (TMult Class)

Example

Applies to

TMult class

Declaration
procedure Assign(Source: TPersistent);

Description

The Assign method for a TMult class takes either a Tstrings, a
TStringList, or another TMult. In the case where the source is a
TMult, the owner of the Assign method gets the exact copy of the
source with all string subscripts and values. In the case where the
source is a Tstrings or a TStringList, the items are copied such that
the strings property of each item becomes the Value, while the index
becomes the subscript in the string form.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TMult class, see the
"RPC Limits" topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Assign Example (TMult
Class)

Assign Example (TMult Class)

TMult Assign Method—Assigning
listbox items to a TMULT

1. Start a new application.

2. Drop one listbox, one memo and one button on the form.
Arrange controls as in the figure below.

3. Copy the following code to the Button1.OnClick event:
procedure TForm1.Button1Click(Sender: TObject);
var
 Mult1: TMult;
 Subscript: string;
begin

 //Create Mult1. Make Form1 its owner
 Mult1 := TMult.Create(Form1);

 //Fill listbox with some strings
 ListBox1.Items.Add('One');
 ListBox1.Items.Add('Two');
 ListBox1.Items.Add('Three');
 ListBox1.Items.Add('Four');
 ListBox1.Items.Add('Five');

 //assign (copy) listbox strings to Mult
 Mult1.Assign(ListBox1.Items);

 //configure memo box for better display
 Memo1.Font.Name := 'Courier';
 Memo1.Lines.Clear;
 Memo1.Lines.Add('Tstrings assigned:');

 //set a starting point
 Subscript := '';
 repeat

 //get next Mult element
 Subscript := Mult1.Order(Subscript, 1);
 //if not the end of list
 if Subscript <> '' then
 //display subscript
 Memo1.Lines.Add(Format('%10s', [Subscript]) + ' -
' + Mult1[Subscript])

 //stop when reached the end
 until Subscript = '';
end;

4. Run the project and click on the button.

Expected output:

TMult Assign Method—Assigning One
TMULT to Another

The following program code demonstrates the use of the TMult
assign method to assign one TMult to another:

1. Start a new application.

2. Drop one memo and one button on the form. Arrange controls
as in the figure below.

3. Copy the following code to the Button1.OnClick event:
procedure TForm1.Button1Click(Sender: TObject);
var
 Mult1, Mult2: TMult;
 Subscript: string;
begin
 //Create Mult1. Make Form1 its owner
 Mult1 := TMult.Create(Form1);
 //Create Mult2. Make Form1 its owner
 Mult2 := TMult.Create(Form1);

 //Fill Mult1 with some strings
 Mult1['First'] := 'One';
 Mult1['Second'] := 'Two';
 Mult1['Third'] := 'Three';
 Mult1['Fourth'] := 'Four';
 Mult1['Fifth'] := 'Five';

 //assign (copy) Mult1 strings to Mult2
 Mult2.Assign(Mult1);

 //configure memo box for better display
 Memo1.Font.Name := 'Courier';

 Memo1.Lines.Clear;
 Memo1.Lines.Add('TMult assigned:');

 //set a starting point
 Subscript := '';
 repeat
 //get next Mult element
 Subscript := Mult2.Order(Subscript, 1);
 if not the end of list
 if Subscript <> '' then
 //display subscript value
 Memo1.Lines.Add(Format('%10s', [Subscript]) + '
- ' + Mult2[Subscript])
 //stop when reached the end
 until Subscript = '';
end;

4. Run the project and click on the button.

Expected output:

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Assign Method (TParams
Class)

Assign Method (TParams
Class)

Example

Applies to

TParams class

Declaration
procedure Assign(Source: TParams);

Description

The Assign method for a TParams class takes another TParams
class parameter. The Assign method is useful for copying one
TParams class to another. The entire contents of the passed in
TParams class are copied into the owner of the assign method. The
Assign method first deletes all of the parameters in the receiving
class and then copies the parameters from the passed in class,
creating a whole duplicate copy.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TParams class, see the
"RPC Limits" topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Assign Example (TParams
Class)

Assign Example (TParams
Class)

The following program code demonstrates how a TParams assign
method can be used to save off the TRPCBroker component
parameters and restore them later:

procedure TForm1.Button1Click(Sender: TObject);
var
 SaveParams: TParams;
 SaveRemoteProcedure: string;
begin
 SaveParams := TParams.Create(self) {create holding
variable with Form1 as owner}
 SaveParams.Assign(brkrRPCBroker1.Param); {save
parameters}
 SaveRemoteProcedure := brkrRPCBroker1.RemoteProcedure;
 brkrRPCBroker1.RemoteProcedure := 'SOME OTHER PROCEDURE';
 brkrRPCBroker1.ClearParameters := True;
 brkrRPCBroker1.Call;
 brkrRPCBroker1.Param.Assign(SaveParams); {restore
parameters}
 brkrRPCBroker1.RemoteProcedure := SaveRemoteProcedure;
 SaveParams.Free; {release memory}
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Call Method

Call Method

Example

procedure Call;

Description

This method executes a remote procedure on the VistA M Server
and returns the results in the Results property. Call expects the
name of the remote procedure and its parameters to be set up in the
RemoteProcedure and Param properties respectively. If
ClearResults is True, then the Results property is cleared before the
call. If ClearParameters is True, then the Param property is cleared
after the call finishes.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the RPC Limits topic.

 NOTE: Whenever the Broker makes a call to the VistA M Server,
if the cursor is crDefault, the cursor is automatically changed to the
hourglass symbol as seen in other Microsoft-compliant software. If
the application has already modified the cursor from crDefault to
something else, the Broker does not change the cursor.

 REF: For a demonstration using the Call method, run the RPC
Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Call Example

Call Example

The following program code demonstrates the use of the Call
method in a hypothetical example of bringing back demographic
information for a patient and then displaying the results in a memo
box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.RemoteProcedure := 'GET PATIENT
DEMOGRAPHICS';
 brkrRPCBroker1.Param[0].Value := 'DFN';
 brkrRPCBroker1.Param[0].PType := reference;
 brkrRPCBroker1.Call;
 Memo1.Lines := brkrRPCBroker1.Results;
end;

 REF: For a demonstration using the Call method, run the RPC
Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > CreateContext Method

CreateContext Method

Example

function CreateContext(strContext: string): boolean;

Use the CreateContext method of the TRPCBroker component to
create a context for your application. To create context, pass an
option name in the strContext parameter. If the function returns True,
a context was created, and your application can use all RPCs
entered in the option's RPC multiple. If the TRPCBroker component
is not connected at the time context is created, a connection is
established. If for some reason a context could not be created, the
CreateContext method returns False.

Since context is nothing more than a client/server "B"-type option in
the OPTION file (#19), standard Kernel Menu Manager (MenuMan)
security is applied in establishing a context. Therefore, a context
option can be granted to users exactly the same way as regular
options are done using MenuMan. Before any RPC can run, it must
have a context established for it to on the VistA M Server. Thus, all
RPCs must be registered to one or more "B"-type options. This plays
a major role in Broker security.

A context cannot be established for the following reasons:

The user has no access to that option.

The option is temporarily out of order.

An application can switch from one context to another as often as it
needs to. Each time a context is created the previous context is
overwritten.

 REF: For information about saving off the current context in
order to temporarily create a different context and then restore the
previous context, see the CurrentContext property.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the "RPC Limits" topic.

 NOTE: Whenever the Broker makes a call to the VistA M Server,
if the cursor is crDefault, the cursor is automatically changed to the
hourglass symbol as seen in other Microsoft-compliant software. If
the application has already modified the cursor from crDefault to
something else, the Broker does not change the cursor.

 REF: For a demonstration that creates an application context,
run the RPC Broker Example (i.e., BrokerExample.EXE) located in
the ..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > CreateContext Example

CreateContext Example

The following program code demonstrates the use of the
CreateContext method:

procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.Connected := True;
 if brkrRPCBroker1.CreateContext('MY APPLICATION') then
 Label1.Caption := 'Context MY APPLICATION was
successfully created.'
 else
 Label1.Caption := 'Context MY APPLICATION could not be
created.';
end;

 REF: For a demonstration that creates an application context,
run the RPC Broker Example (i.e., BrokerExample.EXE) located in
the ..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > GetCCOWtoken Method

GetCCOWtoken Method

Declaration
function GetCCOWtoken(Contextor: TContextorControl): string;

This method returns the CCOW token as a string value. This value is
passed in as authentication for the current user. The developer
should not need access to this, since it is handled directly within the
code for making the connection.

 NOTE: The TContextorControl component is the interface for
the Sentillion Vergence ContextorControl that communicates with the
Context Vault. The component is created based on the type library
for the DLL.

Since developers may want to use the TContextorControl
component to initialize their own instances, the TContextorControl
component is placed on the Kernel palette in Delphi; however, it is
almost as easy to simply create it at runtime without using a
component.

 REF: For an example of the GetCCOWtoken method, run the
RPC Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > IsUserCleared Method

IsUserCleared Method

Example

function IsUserCleared: Boolean;

This method returns a value of True if the user value in the Context
Vault has been cleared. The value is only of interest if
WasUserDefined has a True value (since unless the user has been
defined previously, it would not have a value). This method returns:

True—CCOWUser Context is currently cleared.

False—CCOWUser Context is currently not cleared

This method is used in response to an OnPending event to
determine if the pending change is User Context related, and if so,
whether the User value in the Context Vault has been cleared. If the
value has been cleared, then the application should shut down.
Switching User Context is not supported, since Office of Cyber and
Information Security (OCIS) policy indicates that the current user
must sign off the client workstation and the new user must sign on
the client workstation.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > IsUserCleared Example

IsUserCleared Example

In the event handler for the Commit event of the TContextorControl,
developers can check whether or not the user was previously
defined, and is now undefined or null. In this case, developers would
want to do any necessary processing, then halt.

Procedure TForm1.CommitHandler(Sender: TObject)
begin
 with CCOWRPCBroker1 do
 if WasUserDefined and IsUserCleared then
 begin
 // do any necessary processing before halting
 halt;
 end;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > IsUserContextPending
Method

IsUserContextPending Method
function IsUserContextPending(aContextItemCollection:
IContextItemCollection): Boolean;

This method returns a value of True if the pending context change is
related to User Context; if not, then it may be related to the Patient
Context, etc. This method returns:

True—CCOW pending context change is related to User
Context.

False—CCOW pending context change is not related to User
Context (e.g., Patient Context change).

This method is used in response to an OnPending event to
determine if the pending change is User Context related, and if so,
whether the User value in the Context Vault has been cleared. If the
value has been cleared, then the application should shut down.
Switching User Context is not supported, since Office of Cyber and
Information Security (OCIS) policy indicates that the current user
must sign off the client workstation and the new user must sign on
the client workstation.

 REF: For an example of the IsUserContextPending method, run
the RPC Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > lstCall Method

lstCall Method

Example

procedure lstCall(OutputBuffer: Tstrings;

This method executes a remote procedure on the VistA M Server
and returns the results into the passed Tstrings- or TStringList-type
variable, which you create outside of the call. It is important to free
the memory later. lstCall expects the name of the remote procedure
and its parameters to be set up in the RemoteProcedure and Param
properties respectively. The Results property is not affected by this
call. If ClearParameters is True, then the Param property is cleared
after the call finishes.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the RPC Limits topic.

 NOTE: Whenever the Broker makes a call to the VistA M Server,
if the cursor is crDefault, the cursor is automatically changed to the
hourglass symbol as seen in other Microsoft-compliant software. If
the application has already modified the cursor from crDefault to
something else, the Broker does not change the cursor.

 REF: For a demonstration using the lstCall method, run the RPC
Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > lstCall Example

lstCall Example

The following program code demonstrates the use of the lstCall
method in a hypothetical example of bringing back a list of user's
keys and automatically filling a list box with data:

procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.RemoteProcedure := 'GET MY KEYS';
 brkrRPCBroker1.lstCall(ListBox1.Items);
end;

 REF: For a demonstration using the lstCall method, run the RPC
Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > pchCall Method

pchCall Method
function pchCall: Pchar;

The pchCall function is the lowest level call used by the TRPCBroker
component and each of the other Call methods (i.e., Call, strCall,
and lstCall), which are implemented via pchCall. The return value is
a Pchar, which can contain anything from a null string, a single text
string, or many strings each separated by Return and/or Line Feed
characters. For converting multiple lines within the return value into a
Tstrings, use the SetText method of the Tstrings.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Order Method

Order Method

Example

Applies to

TMult class

Declaration
function Order(const StartSubscript: string; Direction:
integer): string;

Description

The Order method works very similar to the $ORDER function in M.
Using the Order method you can traverse through the list of
elements in the Mult property of an RPC parameter.

The StartSubscript parameter is the subscript of the element whose
next or previous sibling is returned. If the Direction parameter is a
positive number, then the subscript of the following element is
returned, while if it is 0 or negative, then the predecessor's subscript
is returned. If the list is empty, or there are no more elements beyond
the StartSubscript parameter, then empty string is returned. You can
use the empty string as a StartSubscript parameter; then, depending
on the Direction parameter, you get the subscript of the first or the
last element in the list.

There are some important differences between this Order method
and the M $ORDER function:

The Order method requires both parameters to be passed in.

If the StartSubscript parameter is not an empty string, it must be
equal to one of the subscripts in the list; otherwise, an empty
string is returned.

It is case-sensitive.

Unlike arrays in M, elements in TMult may or may not be in
alphabetical order, depending on the Sorted property; so, Order

may not return the next or previous subscript in collating
sequence.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TMult class, see the
RPC Limits topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Order Example

Order Example

The following program code demonstrates how to get the next and
previous elements in a TMult list:

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult: TMult;
 Subscript: string;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Mult['First'] := 'One';
 {Store element pairs one by one}
 Mult['Second'] := 'Two';
 Mult['Third'] := 'Three';
 Mult['Fourth'] := 'Four';
 {Subscript is Fourth}
 Subscript := Mult.Order('Third',1);
 {Subscript isnd}
 Subscript := Mult.Order('Third',-1);
 {Subscript is ''. THIRD subscript does not exist}
 Subscript := Mult.Order('THIRD',1);
 {Subscript is First}
 Subscript := Mult.Order('',1);
 {Subscript is Fourth}
 Subscript := Mult.Order('',-1);
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Position Method

Position Method

Example

Applies to

TMult class

Declaration
function Position(const Subscript: string): longint;

Description

The Position method takes the string subscript of an item in a TMult
variable and returns its numeric index position, much like a
TStringList's IndexOf method. Because TMult uses a TStringList
internally, the IndexOf method is used to implement the Position
method. The first position in the TMult is 0. If TMult is empty, or the
Subscript does not identify an existing item, Position returns -1.

The Position and Subscript methods are the reciprocals of each
other.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TMult class, see the
RPC Limits topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Position Example

Position Example

The following program code demonstrates how to get the position of
an item in a TMult variable:

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult: TMult;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Label1.Caption := 'The position of the ''Third'' element
is ' +
 {is -1 since the list is empty}
 IntToStr(Mult.Postion('Third'));
 Mult['Second'] := 'Two';
 Label1.Caption := 'The position of the ''Third'' element
is ' +
 {is -1 since 'Third' item does not exit}
 IntToStr(Mult.Postion('Third'));
 Label1.Caption := 'The position of the ''Second'' element
is ' +
 {is 0, TMult positions start with 0}
 IntToStr(Mult.Postion('Second'));
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > strCall Method

strCall Method

Example

function strCall: string;

This method executes a remote procedure on the VistA M Server
and returns the results as a value of a function. The strCall method
expects the name of the remote procedure and its parameters to be
set up in the RemoteProcedure and Param properties respectively.
The Results property is not affected by this call. If ClearParameters
is True, then the Param property is cleared after the call finishes.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the "RPC Limits" topic.

 NOTE: Whenever the Broker makes a call to the VistA M Server,
if the cursor is crDefault, the cursor is automatically changed to the
hourglass symbol as seen in other Microsoft-compliant software. If
the application has already modified the cursor from crDefault to
something else, the Broker does not change the cursor.

 REF: For a demonstration using the strCall method, run the
RPC Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > strCall Example

strCall Example

The following program code demonstrates the use of the strCall
method in a hypothetical example of bringing back the name of the
user currently logged on and automatically displaying it in a label:

procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.RemoteProcedure := 'GET CURRENT USER NAME';
 Label1.Caption := brkrRPCBroker1.strCall;
end;

 REF: For a demonstration using the strCall method, run the
RPC Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Subscript Method

Subscript Method

Example

Applies to

TMult class

Declaration
function Subscript(const Position: longint): string;

Description

The Subscript method takes the numeric position of an item in a
TMult variable and returns its string subscript. If TMult is empty, or
the Position is greater than the number of items in the list, an empty
string is returned.

The Subscript and Position methods are the reciprocals of each
other.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TMult class, see the
"RPC Limits" topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > Subscript Example

Subscript Example

The following program code demonstrates how to get the subscript
of an item in a TMult variable:

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult: TMult;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Label1.Caption := 'The subscript of the item at position 1
is ' +
 {is empty since the list is empty}
 Mult.Subscript(1);
 Mult['Second'] := 'Two';
 Label1.Caption := 'The subscript of the item at position 1
is ' +
 {is empty. Only one item in list so far at 0th
position}
 Mult.Subscript(1);
 Mult['Third'] := 'Three';
 Label1.Caption := 'The subscript of the item at position 1
is ' +
 {is Third}
 Mult.Subscript(1);
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > TCCOWRPCBroker Methods

TCCOWRPCBroker Methods
TCCOWRPCBroker
GetCCOWtoken

IsUserCleared

IsUserContextPending

WasUserDefined

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > TRPCBroker Methods

TRPCBroker Methods
TRPCBroker
Call

CreateContext

lstCall

pchCall

strCall

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > TMult Methods

TMult Methods

TMult
Assign

Order

Position

Subscript

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > TParams Method

TParams Method
TParams
Assign

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > WasUserDefined Example

WasUserDefined Example

In the event handler for the Commit event of the TContextorControl,
developers can check whether or not the user was previously
defined, and is now undefined or null. In this case, developers would
want to do any necessary processing, then halt.

Procedure TForm1.CommitHandler(Sender: TObject);
begin
 with CCOWRPCBroker1 do
 if WasUserDefined and IsUserCleared then
 begin
 // do any necessary processing before halting
 halt;
 end;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Methods and Examples > WasUserDefined Method

WasUserDefined Method

Example

function WasUserDefined: Boolean;

This method is used to determine whether or not a User Context is
currently or was previously defined in the Context Vault. It returns
True any time after the initial establishment of User Context. This
method returns:

True—CCOW User Context established.

False—CCOW User Context not established.

This method is used in response to an OnPending event to
determine if the pending change is User Context related, and if so,
whether the User value in the Context Vault has been cleared. If the
value has been cleared, then the application should shut down.
Switching User Context is not supported, since Office of Cyber and
Information Security (OCIS) policy indicates that the current user
must sign off the client workstation and the new user must sign on
the client workstation.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > AccessCode Property

AccessCode Property

Example

Applies to

TVistaLogin class

Declaration
property AccessCode: String;

Description

The AccessCode property is available at run-time only. It holds the
Access code for the lmAVCodes mode of Silent Login. The user's
Access code value should be set in as clear text. It is encrypted
before it is transmitted to the VistA M Server.

 REF: For more information on Access codes, see the "Part 1:
Sign-On/Security" section in the Kernel Systems Management
Guide.

 REF: For a demonstration using the lmAVCodes, run the
lmAVCodes_Demo.EXE located in the
..\BDK32\Samples\SilentSignOn directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > AllowShared Property

AllowShared Property

Applies to

TSharedRPCBroker component

Declaration
property AllowShared: Boolean;

Description

The AllowShared property determines whether or not the connection
through the RPCBroker to the VistA M Server can be shared with
other applications. If it is not set, the value is False and the
application has its own dedicated partition on the server. If it is set to
True, the partition can be shared with other applications.

 CAUTION: If an application depends on whether local
variables from previous calls are present in the partition **DO
NOT** permit the partition to be Shared. If the partition is
shared, local variables are cleared out between RPC calls.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > BrokerVersion Property

BrokerVersion Property (read-
only)

Applies to

TRPCBroker component

Declaration
property BrokerVersion: String;

Description

The BrokerVersion property is available at run-time only. This read-
only property indicates the RPC Broker version used in generating
the application (currently, it returns the string "XWB*1.1*50").

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > CCOWLogonIDName
Property

CCOWLogonIDName Property
(read-only)

Applies to

TCCOWRPCBroker component

Declaration
property CCOWLogonIDName: String;

Description

The CCOWLogonIDName property is available at run-time only. This
read-only property is the name used within the CCOW Context Vault
to store the LogonId.

It permits the user to identify the logon ID name associated with the
CCOWLogonIDValue property logon ID name value used within the
Context Vault related to User Context.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > CCOWLogonIDValue
Property

CCOWLogonIDValue Property
(read-only)

Applies to

TCCOWRPCBroker component

Declaration
property CCOWLogonIDValue: String;

Description

The CCOWLogonIDValue property is available at run-time only. This
read-only property gives the value currently associated with the
LogonId in the CCOW Context Vault.

It permits the user to identify the logon ID value associated with the
CCOWLogonIDName property logon ID name used within the
Context Vault related to User Context.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > CCOWLogonName
Property

CCOWLogonName Property
(read-only)

Applies to

TCCOWRPCBroker component

Declaration
property CCOWLogonName: String;

Description

The CCOWLogonName property is available at run-time only. This
read-only property gives the name used to store the LogonName of
the currently active user.

It permits the user to identify the logon name associated with the
CCOWLogonNameValue property logon name value used within the
Context Vault related to User Context.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > CCOWLogonNameValue
Property

CCOWLogonNameValue
Property (read-only)

Applies to

TCCOWRPCBroker component

Declaration
property CCOWLogonNameValue: String;

Description

The CCOWLogonNameValue property is available at run-time only.
This read-only property gives the value of the LogonName of the
currently active user.

It permits the user to identify the logon name value associated with
the CCOWLogonName property logon name used within the Context
Vault related to User Context.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > CCOWLogonVpid Property

CCOWLogonVpid Property
(read-only)

Applies to

TCCOWRPCBroker component

Declaration
property CCOWLogonVpid: String;

Description

The CCOWLogonVpid property is available at run-time only. This
read-only property gives the name used to store the LogonVpid
value in the CCOW Context Vault.

It permits the user to identify the logon VPID name associated with
the CCOWLogonVpidValue property logon VPID value used within
the Context Vault related to User Context.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > CCOWLogonVpidValue
Property

CCOWLogonVpidValue
Property (read-only)

Applies to

TCCOWRPCBroker component

Declaration
property CCOWLogonVpidValue: String;

Description

The CCOWLogonVpidValue property is available at run-time only.
This read-only property gives the value of the VA Person
Identification (VPID) value for the currently logged on user, if the
facility has been enumerated; otherwise, the value returned is a null
string.

It permits the user to identify the logon VPID value associated with
the CCOWLogonVpid property logon VPID name used within the
Context Vault related to User Context.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ClearParameters Property

ClearParameters Property

Example

Applies to

TRPCBroker component

Declaration
property ClearParameters: Boolean;

Description

The ClearParameters design-time property gives the developer the
option to clear the Param property following every invocation of any
of the following methods:

Call
strCall

lstCall

Setting ClearParameters to True clears the Param property.

Simple assignment of True to this property clears the Param
property after every invocation of the Call, strCall, and lstCall
methods. Thus, the parameters need only be prepared for the next
call without being concerned about what was remaining from the
previous call.

By setting ClearParameters to False, the developer can make
multiple calls with the same Param property. It is also appropriate to
set this property to False when a majority of the parameters in the
Param property should remain the same between calls. However,
minor changes to the parameters can still be made.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ClearParameters Example

ClearParameters Example

The following program code sets the ClearParameters property to
True:

procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.ClearParameters := True;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ClearResults Property

ClearResults Property

Example

Applies to

TRPCBroker component

Declaration
property ClearResults: Boolean;

Description

The ClearResults design-time property gives the developer the
option to clear the Results property prior to every invocation of the
Call method. The strCall and lstCall methods are unaffected by this
property. Setting ClearResults to True clears the Results property.

If this property is True, then the Results property is cleared before
every invocation of the Call method; thus, assuring that only the
results of the last call are returned. Conversely, a setting of False
accumulates the results of multiple calls in the Results property.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ClearResults Example

ClearResults Example

The following program code sets the ClearResults property to True:

procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.ClearResults := True;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Connected Property

Connected Property

Example

Applies to

TRPCBroker component

property Connected: Boolean;

Description

The Connected design-time property connects your application to
the VistA M Server:

Setting this property to True connects the application to the
server.

Setting it to False disconnects the application from the server.

It is not necessary for your application to manually establish a
connection to the VistA M Server. RPC Broker 1.1 automatically
connects and disconnects from the server. When you invoke an
RPC, if a connection has not already been established, one is
established for you. However, a user is not able to run your RPC
unless a context has been created with the CreateContext method.

There are other advantages to establishing a connection manually.
You can check if a connection is established, and branch accordingly
depending on whether or not a connection was established. One
good place to do this is in your application form's OnCreate event.
For that event, you could include code like the following:

try
 brkrRPCBroker1.Connected:= True;
except
 on EBrokerError do
begin
 ShowMessage('Connection to server could not be
established!');
 Application.Terminate;
end;
end;

This code sets the TRPCBroker component's Connected property to
True to establish a connection. If a Broker exception (i.e.,
EBrokerError) was raised (in which case the connection was not
established), it provides a message to the user and calls the
Terminate method to exit.

To verify that your application is connected to the VistA M Server,
check the value of the Connected property.

If a connected TRPCBroker component is destroyed (when the
application is closed, for example), that component first disconnects
from the VistA M Server. However, for programming clarity, it is
advisable to disconnect your application from the server manually by
setting the Connected property to False.

If your application uses more than one Broker component, you
should be aware of the component's connect and disconnect
behavior.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Connected Example

Connected Example

The following program code sets the Connected property to True:

procedure TForm1.btnConnectClick(Sender: TObject);
begin
 brkrRPCBroker1.Server := edtServer.Text;
 brkrRPCBroker1.ListenerPort := StrToInt(edtPort.Text);
 brkrRPCBroker1.Connected := True;
end;

 NOTE: The Server and ListenerPort properties must be set at
design or run-time before setting the Connected property to True.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Contextor Property

Contextor Property

Applies to

TCCOWRPCBroker component

Declaration
property Contextor: TContextorControl;
 read Fcontextor write
FContextor; //CCOW

Description

The Contextor property is available at run-time only. It must be set to
an active instance of the TContextorControl component in order to
initiate a login with CCOW User Context. If it is not set to an active
instance, then the component basically reverts to an instance of
TRPCBroker, since none of the features of CCOW User Context is
used.

 NOTE: The TContextorControl component is the interface for
the Sentillion Vergence ContextorControl that communicates with the
Context Vault. The component is created based on the type library
for the DLL.

Since developers may want to use the TContextorControl
component to initialize their own instances, the TContextorControl
component is placed on the Kernel palette in Delphi; however, it is
almost as easy to simply create it at runtime without using a
component.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Count Property (TMult
Class)

Count Property (TMult Class)

Example

Applies to

TMult class

Declaration
property Count: Word;

Description

The Count design-time property contains the number of items in a
TMult class. If TMult class is empty, Count is zero.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Count Example (TMult
Class)

Count Example (TMult Class)

The following program code displays the number of items in a Mult
class in the caption of a label when the user clicks the CountItems
button:

procedure TForm1.CountItemsClick(Sender: TObject);
begin
 Label1.Caption := 'There are ' + IntToStr(Mult.Count) + '
items in the Mult.'
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Count Property (TParams
Class)

Count Property (TParams
Class)

Example

Applies to

TParams class

Declaration
property Count: Word;

Description

The Count property contains the number of parameters in a
TParams class. If the TParams class is empty, Count is zero.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Count Example (TParams
Class)

Count Example (TParams
Class)

The following program code displays the number of parameters in a
TParams variable within the caption of a label when the user clicks
the CountParameters button:

procedure TForm1.CountParametersClick(Sender: TObject);
begin
 Label1.Caption := 'There are ' +
IntToStr(brkrRPCBroker1.Param.Count) + ' parameters.';
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > CurrentContext Property

CurrentContext Property (read-
only)

Example

Applies to

TRPCBroker component

Declaration
property CurrentContext: String;

Description

The CurrentContext property is available at run-time only. This read-
only property provides the current context. Developers can save off
the current context into a local variable, set a new context, and then
restore the original context from the local variable before finishing.
This permits the application to use the CreateContext method with
an additional context when an initial context has already been
established.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > CurrentContext Example

CurrentContext Example

The following program code demonstrates the use of the
CurrentContext property in a hypothetical example of saving and
restoring the current context of an application:

procedure TForm1.MyFantasticModule;
var
 OldContext: String;
begin
 OldContext := RPCB.CurrentContext; // save off old
context
 try
 RPCB.SetContext('MyContext');
 .
 .
 .
 finally
 RPCB.SetContext(OldContext); // restore context before
leaving
 end;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > DebugMode Property

DebugMode Property

Applies to

TRPCBroker component

Declaration
property DebugMode: Boolean;

Description

The DebugMode design-time property controls how the VistA M
Server process should be started. The default setting is False.

A setting of False starts the VistA M Server in the usual manner, as
a background process.

For debugging purposes, it can be very helpful to:

1. Set break points.

2. Run the server process interactively.

3. Step through the execution.

For those situations, set this property to True. When the
TRPCBroker component connects with this property set to True, you
get a dialogue window indicating your workstation Internet Protocol
(IP) address and the port number.

At this point, you should:

1. Switch over to the server.

2. Enter break points.

3. Issue the debug command (e.g., ZDEBUG in DSM).

4. Start the following server process:

>D EN^XWBTCP

You are prompted for the workstation Internet Protocol (IP) address
and the port number. After entering the information, switch over to
the client application and click OK.

 REF: For more information, see the "How to Debug Your
Application" topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Division Property
(TVistaLogin Class)

Division Property (TVistaLogin
Class)

Applies to

TVistaLogin class

Declaration
property Division: String;

Description

The Division property is available at run-time only. It can be set to
the desired Division for a user for Silent Login.

 REF: For information about handling multi-divisions during the
Silent Login process, see the "Handling Divisions During Silent
Login" topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Division Property
(TVistaUser Class)

Division Property (TVistaUser
class)

Applies to

TVistaUser class

property Division: String;

Description

The Division property is available at run-time only. It is set to the
division for a user when they are logged on.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > DivList Property

DivList Property (read-only)

Applies to

TVistaLogin class

Declaration
property DivList: Tstrings;

Description

The DivList property is available at run-time only. This read-only
property is a list of divisions that are available for selection by the
user for the signon division. This list is filled in, if appropriate, during
the Silent Login at the same time that the user is determined to have
multiple divisions from which to select. The first entry in the list is the
number of divisions present, followed by the names of the divisions
that are available to the user.

 REF: For information about handling multi-divisions during the
Silent Login process, see the "Handling Divisions During Silent
Login" topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > DomainName Property

DomainName Property

Applies to

TVistaLogin class

Declaration
property DomainName: String;

Description

The DomainName property is available at run-time only. It can be
used to obtain the domain name of the server to which the RPC
Broker is currently connected.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > DTime Property

DTime Property

Applies to

TVistaUser class

Declaration
property DTime: String;

Description

The DTime property is available at run-time only. It holds the user's
DTime. DTime sets the time a user has to respond to timed read. It
can be set from 1 to 99999 seconds.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > DUZ Property (TVistaLogin
Class)

DUZ Property (TVistaLogin
Class)

Applies to

TVistaLogin class

Declaration
property DUZ: String;

Description

The DUZ property is available at run-time only. It holds the user's
Internal Entry Number (IEN) from the NEW PERSON file (#200) for
TVistaLogin.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > DUZ Property (TVistaUser
Class)

DUZ Property (TVistaUser
Class)

Applies to

TVistaUser class

Declaration
property DUZ: String;

Description

The DUZ property is available at run-time only. It holds the user's
Internal Entry Number (IEN) from the NEW PERSON file (#200) for
TVistaUser.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ErrorText Property

ErrorText Property

Applies to

TVistaLogin class

Declaration
property ErrorText: String;

Description

The ErrorText property is available at run-time only. It holds text of
any error message returned by the VistA M Server during the
attempted Silent Login. It should be checked if the login fails. For
example, it could indicate the following:

The Verify code needs to be changed.

An invalid Access/Verify code pair.

An invalid Division.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > First Property

First Property

Example

Applies to

TMult class

Declaration
property First: String;

Description

The First design-time property contains the subscript of the first item
in a TMult class. The first item is always in the 0th Position. You can
think of the First property as a shortcut to executing the
TMult.Order('',1) method. If a TMult variable does not contain any
items, the First property is empty.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > First Example

First Example

The following program code displays the subscript and value of the
first item in a Mult variable in the caption of a label when the user
clicks the GetFirst button:

procedure TForm1.GetFirstClick(Sender: TObject);
var
 Mult: TMult;
 Subscript: string;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Mult['Fruit'] := 'Apple';
 {Store element pairs one by one)
 Mult['Vegetable'] := 'Potato';
 Label1.Caption := 'The subscript of the first element: ' +
Mult.First + ', and its value: ' + Mult[Mult.First];
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples >
IsBackwardCompatibleConnection Property

IsBackwardCompatibleConnect
ion Property

Applies to

TRPCBroker component

Declaration
property IsBackwardCompatibleConnection: Boolean;

Description

The IsBackwardCompatibleConnection property is used to determine
whether the connection to be made should be an old-style (i.e.,
callback) or a new-style (i.e., UCX or non-callback) RPC Broker
connection. When set to:

True (default)—The RPC Broker makes a regular callback
connection.

False—The RPC Broker makes a UCX or non-callback
connection, so that it can be used from behind firewalls, routers,
etc.

The value should be set to False if any of the ParamType
values are used in RPCs.

 NOTE: This property was introduced with RPC Broker Patch
XWB*1.1*35.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > IsNewStyleConnection
Property

IsNewStyleConnection Property
(read-only)

Applies to

TRPCBroker component

Declaration
property IsNewStyleConnection: Boolean;

Description

The IsNewStyleConnection property is available at run-time only.
This read-only property indicates whether or not the current
connection is a new-style (i.e., non-callback) connection.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > IsProductionAccount
Property

IsProductionAccount Property

Applies to

TVistaLogin class

Declaration
property IsProductionAccount: Boolean;

Description

The IsProductionAccount property is available at run-time only. It can
be checked to determine if the current connection is to a Production
account:

True—If the account is a Production account.

False—If the account is not a Production account.

While it is declared as a read-write property, it should be considered
to be read-only, since changing its value does not change the nature
of the server to which the RPC Broker is connected.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > KernelLogIn Property

KernelLogIn Property

Example

Applies to

TRPCBroker component

Declaration
property KernelLogIn: Boolean;

Description

The KernelLogin design-time property is a Boolean property, which
indicates the manner of signon:

True—Presents the regular Kernel login security form.

False—Broker uses the TVistaLogin class for signon.

The TVistaLogin class is referenced during Silent Login.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Language Property

Language Property

Applies to

TVistaUser class

Declaration
property Language: String;

Description

The Language property is available at run-time only. It holds the
user's language from the NEW PERSON file (#200).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Last Property

Last Property

Example

Applies to

TMult class

Declaration
property Last: String;

Description

The Last design-time property contains the subscript of the last item
in a TMult class. The last item is always in count-1 Position. You can
think of the Last property as a shortcut to executing the
TMult.Order('',-1) method. If a TMult variable does not contain any
items, the Last property is empty.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Last Example

Last Example

The following program code displays the subscript and value of the
last item in a Mult variable in the caption of a label when the user
clicks the GetLast button:

procedure TForm1.GetLastClick(Sender: TObject);
var
 Mult: TMult;
 Subscript: string;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Mult['Fruit'] := 'Apple';
 {Store element pairs one by one}
 Mult['Vegetable'] := 'Potato';
 Label1.Caption := 'The subscript of the last element: ' +
Mult.Last + ', and its value: ' + Mult[Mult.Last];
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ListenerPort Property

ListenerPort Property

Example

Applies to

TRPCBroker component

Declaration
property ListenerPort: Integer;

Description

The ListenerPort design-time property gives the developer the ability
to select the Listener port on the VistA M Server. It must always be
set before connecting to the server.

If one VistA M Server system has two or more environments (UCIs)
that support client/server applications (e.g., Test and Production
accounts), the Broker Listener processes must be listening on
unique ports. Thus, you must specify which Listener port to use
when you start the Listener on the VistA M Server. Consequently, if
you have more than one Listener running on the same server, the
application needs to specify the correct Listener for its connection
request. This is accomplished using the ListenerPort property.

After the initial connection, the VistA M Server connection is moved
to another port number (i.e., Socket), which is used for the remainder
of the session.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ListenerPort Example

ListenerPort Example

The following program code demonstrates using the ListenerPort
property:

procedure TForm1.btnConnectClick(Sender: TObject);
begin
 brkrRPCBroker1.ListenerPort := 9001;
 brkrRPCBroker1.Connected := True;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > LogIn Property

LogIn Property

Example

Applies to

TRPCBroker component

Declaration
property LogIn: TVistaLogin;

Description

The LogIn property is available at run-time only. It holds parameters
that the application needs to pass for Silent Login. The instance of
the TVistaLogin used for this property is created automatically during
the creation of the TRPCBroker object, and is therefore, available for
reference as a TRPCBroker property without any user setup.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > LoginHandle Property

LoginHandle Property

Applies to

TVistaLogin class

Declaration
property LoginHandle: String;

Description

The LoginHandle property is available at run-time only. It holds the
Application Handle for the lmAppHandle mode of Silent Login. The
Application Handle is obtained from the VistA M Server by a
currently running application using the GetAppHandle function in the
TRPCB unit. The function returns a String value, which is then
passed as a command line argument with an application that is
being started. The new application must know to look for the handle,
and if present, set up the Silent Login. The StartProgSLogin
procedure in the RpcSLogin unit can be used directly or as an
example of how the application would be started with a valid
AppHandle as a command line argument. The CheckCmdLine
procedure in the RpcSLogin unit can be used in an application to
determine whether an AppHandle has been passed and to initiate
the Broker connection or used as an example of how this could be
done.

 NOTE: The two procedures referenced here also pass the
current Server, ListenerPort, and Division for the user so that the
connection would be made to the same VistA M Server as the
original application.

The AppHandle that is obtained via the GetAppHandle function is
only valid for approximately 20 seconds, after which the Silent Login
would fail.

 REF: For a demonstration using the lmAppHandle, run the
lmAppHandle_Demo.EXE located in the
..\BDK32\Samples\SilentSignOn directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Mode Property

Mode Property

Example

Applies to

TVistaLogin class

Declaration
property Mode: TloginMode;

Description

The Mode property is available at run-time only. It indicates the
mode of Silent Login. The possible values include: lmAVCodes and
lmAppHandle.

 REF: For a demonstration using the lmAVCodes, run the
lmAVCodes_Demo.EXE located in the
..\BDK32\Samples\SilentSignOn directory.

 REF: For a demonstration using the lmAppHandle, run the
lmAppHandle_Demo.EXE located in the
..\BDK32\Samples\SilentSignOn directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TLoginMode Type

TLoginMode Type

The TLoginMode type is used with the Mode property as part of the
TVistaLogin class.

Unit

TRPCB

type TLoginMode = (lmAVCodes, lmAppHandle);

Description

The TLoginMode type includes the acceptable values that can be
used during Silent Login. If the KernelLogIn property is set to False,
then it is a Silent Login. Thus, one of these mode types has to be set
in the TVistaLogin class Mode property. The Broker uses the
information to perform a Silent Login.

The following table lists the possible values:

Value Meaning

lmAVCodes Used if the application is passing in the user's
Access and Verify codes during Silent Login.

 REF: For a demonstration using the lmAVCodes,
run the lmAVCodes_Demo.EXE located in the
..\BDK32\Samples\SilentSignOn directory.

lmAppHandle Used to pass in an application handle rather than a
user's Access and Verify codes during Silent Login. It
sets the mode to lmAppHandle and the KernelLogIn
property to False. Indicates that an application
handle is being passed to the application when it

was being started as opposed to Access and Verify
codes.

 REF: For a demonstration using the
lmAppHandle, run the lmAppHandle_Demo.EXE
located in the ..\BDK32\Samples\SilentSignOn
directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Mult Property

Mult Property

Example

Applies to

TParamRecord class

Declaration
property Mult: TMult;

Description

(Mult is a property of the TParamRecord used in the Param
property.)

The Mult design-time property of a TParamRecord class, which is
the type of each TRPCBroker component's Param[x] element, can
be used to pass a string-subscripted array of strings to the VistA M
Server. For example, if you need to pass a patient's name and SSN
to a remote procedure, you could pass them as two separate
parameters as PType literals, or you could pass them in one
parameter using the Mult property as a PType list. If one is being
sent, a Mult must be the last element in the Param array.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Mult Example

Mult Example

The following program code demonstrates how the Mult property can
be used to pass several data elements to the VistA M Server in one
parameter:

procedure TForm1.Button1Click(Sender: TObject);
begin
 with brkrRPCBroker1 do begin
 Param[0].PType :=list;
 Param[0].Mult['"NAME"'] := 'XWBBROKER,ONE'
 Param[0].Mult['"SSN"'] := '000456789';
 RemoteProcedure := 'SETUP PATIENT INFO';
 Call;
 end;
end;

Assuming variable P1 is used on the VistA M Server to receive this
array, it would look like the following:

P1("NAME")=XWBBROKER,ONE
P1("SSN")=000456789

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > MultiDivision Property

MultiDivision Property

Applies to

TVistaLogin class

Declaration
property MultiDivision: Boolean;

Description

The MultiDivision property is available at run-time only. It indicates
whether the user has multi-divisional access. It is set during the
Silent Login process, if the user has more than one division that can
be selected.

 REF: For information about handling multi-divisions during the
Silent Login process, see the "Handling Divisions During Silent
Login" topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Name Property

Name Property

Applies to

TVistaUser class

Declaration
property Name: String;

Description

The Name property is available at run-time only. It holds the user's
name from the NEW PERSON file (#200).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > OldConnectionOnly
Property

OldConnectionOnly Property

Applies to

TRPCBroker component

Declaration
property OldConnectionOnly: Boolean;

Description

The OldConnectionOnly property can be set to True if only an old-
style (i.e., callback) connection is desired. This is primarily for
developers during debugging, if an initial connection is not a new-
style (i.e., non-callback) RPC Broker connection, an error message
is displayed. Clicking OK and F9 (run) causes the old-style (or
callback) connection to be made. However, setting this property to
True does away with the initial attempt to make a new-style
connection, and thus, the error message during debugging. The
error message is not seen outside of the debugger within Delphi.

 CAUTION: Applications should not be released with this
property set to True!

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > OnConnectionDropped
Property

OnConnectionDropped
Property

Applies to

TSharedRPCBroker component

Declaration
property OnConnectionDropped: TOnConnectionDropped;

Description

The OnConnectionDropped property is used to provide a capability
for handling a connection loss. You can recognize a loss of
connection to the VistA M Server when:

An RPC call is made.

The RPCBroker sends its background messages to the VistA M
Server at intervals of 45 to 60 seconds to let the server know
that the application is still connected.

Since with the SharedRPCBroker, this loss would be recognized in
the RPCSharedBrokerSessionMgr and not in the individual
applications, they would not normally be aware of this problem until
another RPC call is made.

To promptly notify the application, the RPCSharedBrokerSessionMgr
sends a message back to the applications that have implemented a
procedure for the OnConnectionDropped property. This procedure
accepts as arguments:

An integer (the connection index).

A WideString containing any error text for the disconnection; as
indicated by the TOnConnectionDropped declaration.

A default procedure is supplied that displays a dialogue box
indicating the loss of connection and any error text supplied. If
further processing is desired, a custom procedure should be created
and the OnConnectionDropped property set to it.

TOnConnectionDropped = procedure (ConnectionIndex: Integer;
ErrorText: WideString) of object;

This indicates the format of the procedure and arguments
required for a method to be used as the OnConnectionDropped
property.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > OnFailedLogin Property

OnFailedLogin Property

Example

Applies to

TVistaLogin class

Declaration
property OnFailedLogin: TOnLoginFailure;

Description

The OnFailedLogin property is available at run-time only. It holds a
procedure to be invoked on a failed Silent Login that permits an
application to handle errors as desired; where TOnLoginFailure is
defined as:

TOnLoginFailure = procedure (VistaLogin: TVistaLogin) of
object;

For example, an application could define:

Procedure HandleLoginError(Sender: TObject);

and then set:

OnFailedLogin := HandleLoginError;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > OnLogout Property

OnLogout Property

Applies to

TSharedRPCBroker component

Declaration
property OnLogout: TNotifyEvent;

Description

The OnLogout property is used to provide a capability in the future
for the RPCSharedBrokerSessionMgr to receive a message
requesting all applications to log out. This message would then be
propagated to all applications that are connected with the
RPCSharedBrokerSessionMgr. If a procedure is specified as a value
for the OnLogout property, it is called when this message is received.
It can do any processing necessary prior to logging out of the
system. There is a default method that passes the message along to
the main window for the application, requesting it to close.

TLogout = procedure () of object;

This class defines the structure of the procedure necessary to be
used as an OnLogout value. It would simply be a procedure with
no arguments.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > OnRPCBFailure Property

OnRPCBFailure Property

Example

Applies to

TRPCBroker component

Declaration
property OnRPCBFailure: TOnRPCBFailure;

Description

The OnRPCBFailure property is available at run-time only. It holds a
procedure to be invoked when the Broker generates an exception
that permits an application to handle errors as desired, where
TOnRPCBFailure is defined as:

TOnRPCBFailure = procedure (RPCBroker: TRPCBroker) of object;

The text associated with the error causing the exception is found in
the RPCBError property.

 NOTE: If OnFailedLogin is also set, it handles any login errors
and not pass them up.

 REF: To illustrate the effects of TRPCBroker properties related
to Error Handling, run the "Error Handling Demo" application (i.e.,
XWBOnFail.EXE) located in the ..\BDK\Samples\SilentSignOn p [13]
directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > OnRPCBFailure Example

OnRPCBFailure Example

For example, an application could define:

Procedure HandleBrokerError(Sender: TObject);

and then set:

OnRPCBFailure := HandleBrokerError;

 NOTE: The initialization of the OnRPCBFailure property should
be before the first call to the TRPCBroker component.

The following instance of an error handler takes the Message
property of the exception and stores it with a time date stamp into a
file named Error.Log in the same directory with the application exe:

procedure TForm1.HandleBrokerError(Sender: TObject);
var
 ErrorText: String;
 Path: String;
 StrLoc: TStringList;
 NowVal: TDateTime;
begin
 NowVal := Now;
 ErrorText := TRPCBroker(Sender).RPCBError;
 StrLoc := TStringList.Create;
 try
 Path := ExtractFilePath(Application.ExeName);
 Path := Path + 'Error.Log';
 if FileExists(Path) then
 StrLoc.LoadFromFile(Path);
 StrLoc.Add(FormatDateTime('mm/dd/yyyy hh:mm:ss

',NowVal) + ErrorText);
 StrLoc.SaveToFile(Path);
 finally
 StrLoc.Free;
 end;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Param Property

Param Property

Example

Applies to

TRPCBroker component

Declaration
property Param: TParams;

Description

The Param property is available at run-time only. It holds all of the
parameters that the application needs to pass to the remote
procedure using any of the following methods:

Call

strCall

lstCall

Param is a zero-based array of TParamRecord. You do not need to
explicitly allocate any memory for the Param property. Simple
reference to an element or a value assignment (:=) dynamically
allocates memory as needed. You should start with the 0th element
and proceed in sequence. Do not skip elements.

Each element in the Param array has the following properties:

Mult

PType

Value

 CAUTION: Passing multiple parameters of PType list in one
remote procedure call (RPC) is not supported at this time. Only
one list parameter can be passed to an RPC, and it must be the
last parameter in the actual list.

The Param relationship to the TRPCBroker component is as follows:

The TRPCBroker component contains the Param property (i.e.,
TParams class).

The TParams class contains the ParamArray property (array
[I:integer]: TParamRecord class).

The TParamRecord class contains the Mult property (i.e.,
TMult class).

The TMult class contains the MultArray property
(array[S: string]: string).

The MultArray property internally uses a TStringList in
which each element's object is a TString

If the remote procedure on the VistA M Server does not require any
incoming parameters, applications can pass an empty Param

property. The client application merely sets the RemoteProcedure
property and makes the call. If the Param property retains a value
from a previous call, it can be cleared using the ClearParameters
property. Thus, it is possible to make a call without passing any
parameters.

 CAUTION: The following restrictions apply with the Param
property:

1. You are not allowed to "skip" passing parameters, such as
TAG^ROUTINE(1,,3), where you can skip passing the
second parameter in DSM code. If there are fewer elements
in the Param array than exist as input parameters in the
RPC, the subsequent parameters is not passed to the RPC.

2. Passing multiple array parameters in one remote procedure
call is not supported at this time. Only one array parameter
can be passed to an RPC, and it must be the last parameter
in the actual list.

 REF: For a demonstration using the Param property, run the
RPC Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Param Example

Param Example

The following program code demonstrates how the Param property
of a TRPCBroker component is referenced and filled with two
parameters that the remote procedure expects:

procedure TForm1.Button1Click(Sender: TObject);
begin
 {first parameter is a single string}
 brkrRPCBroker1.Param[0].Value := '02/27/14';
 brkrRPCBroker1.Param[0].PType := literal;
 {second parameter is a list}
 brkrRPCBroker1.Param[1].Mult['"NAME"'] := 'XWBUSER,ONE';
 brkrRPCBroker1.Param[1].Mult['"SSN"'] := '000-45-6789';
 brkrRPCBroker1.Param[1].PType := list;
end;

 REF: For a demonstration using the Param property, run the
RPC Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > PromptDivision Property

PromptDivision Property

Example

Applies to

TVistaLogin class

Declaration
property PromptDivison: Boolean;

Description

The PromptDivision property is available at run-time only. It should
be set to:

True—If the user should be prompted for Division during Silent
Login. The prompt only occurs if the user has multi-division
access.

False—If the prompt should not be displayed due to the manner
in which the application is running.

However, if set to False and multi-division access is a possibility,
then the application must handle it in another way. For example, the
application developer would do the following:

1. Set Login.PromptDivision to False.

2. Set the Connected property to True to signon.

3. On return, check whether the Connected property was set to
True or check whether the Login.ErrorText property was non-
null (and especially "No Division Selected").

4. If the connection was successful, there is no problem;
otherwise, proceed to Steps 5 - 8.

5. Check the Login.MultiDivision property and see if it was set to
True, which is what would be expected.

6. If the Login.MultiDivision property is set to True, then check the
Login.DivList property for a list of the available divisions
(remember the first entry is the number of entries that follow),
and in whatever method was available to the application, have
the user select the correct division.

7. Set the Login.Division property to the selected Division.

8. Set the Connected property to True, so the connection would be
attempted to be established again.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > PType Property

PType Property

Example

Applies to

TParamRecord class

Declaration
property PType: TParamType;

Description

PType is a property of the TParamRecord used in the Param
property.

The PType design-time property determines how the parameter is
interpreted and handled by the Broker.

Value Definition

literal Delphi string value, passed as a string literal to the VistA
M server. The VistA M Server receives the contents of
the corresponding Value property as one string or one
number.

reference Delphi string value, treated on the VistA M Server as an
M variable name and resolved from the symbol table at
the time the RPC executes. The VistA M Server receives
the contents of the corresponding Value property as a
name of a variable defined on the server. Using
indirection, the Broker on the server resolves this
parameter before handing it off to the application.

list A single-dimensional array of strings in the Mult
subproperty of the Param property, passed to the VistA

M Server where it is placed in an array. String
subscripting can be used. This value is used whenever
an application wants to send a list of values to the VistA
M Server. Data is placed in a local array. In this case,
the contents of the corresponding Mult property is sent,
while the Value property is ignored.

global This value is similar to list, but instead of data being
placed in a local array, it is placed in a global array. Use
of this value removes the potential problem of allocation
errors when large quantities of data are transmitted. This
value was made available as of RPC Broker Patch
XWB*1.1*40.

empty This value indicates that no parameter value is to be
passed; it simply passes an empty argument. This value
was made available as of RPC Broker Patch
XWB*1.1*40.

stream This value indicates that the data should be passed as a
single stream of data. This value was made available as
of RPC Broker Patch XWB*1.1*40.

undefined The Broker uses this value internally. It should not be
used by an application.

For instance, if you need to pass an empty string to the remote
procedure call (RPC), the Value property should be set to '' (i.e., null)
and the PType to literal. Using reference, a developer can pass an M
variable (e.g., DUZ) without even knowing its value. However, If the

M variable being referenced is not defined on the VistA M Server, a
run-time error occurs. When passing a list to an RPC:

1. Set the PType to list.

2. Populate the Mult property.

3. Do not put anything into the Value property (in this case, Value is
ignored).

 REF: For a demonstration using PType, run the RPC Broker
Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > PType Example

PType Example

The following program code demonstrates a couple of different uses
of the PType property. Remember, that each Param[x] element is
really a TParamRecord-type class.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with brkrRPCBroker1 do begin
 RemoteProcedure := 'SET NICK NAME';
 Param[0].Value := 'DUZ';
 Param[0].PType := reference;
 Param[1].Value := edtNickName.Text;
 Param[1].PType := literal;
 Call;
 end;
end;

 REF: For a demonstration using PType, run the RPC Broker
Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > RemoteProcedure Property

RemoteProcedure Property

Example

Applies to

TRPCBroker component

Declaration
property RemoteProcedure: TRemoteProc;

Description

The RemoteProcedure design-time property should be set to the
name of the remote procedure call entry in the REMOTE
PROCEDURE file (#8994).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > RemoteProcedure Example

RemoteProcedure Example

The following program code demonstrates using the
RemoteProcedure property:

procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.RemoteProcedure := 'MY APPLICATION REMOTE
PROCEDURE';
 brkrRPCBroker1.Call;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Results Property

Results Property

Example

Applies to

TRPCBroker component

Declaration
property Results: Tstrings;

Description

The Results design-time property contains the results of a Call
method. In the case where the RPC returns a single value, it is
returned in Results[0]. If a call returns a list of values, the Results
property is filled in the order the list collates on the VistA M Server.
The Results property can only contain values of array elements—
subscripts are not returned.

For example:

On the VistA M Server, the M routine constructs the list in the
following sequence:

S LIST("CCC")="First"
S LIST(1)="Second"
S LIST("AAA")="Third"
S LIST(2)="Fourth"

Before Broker returns the list to the client, M re-sorts it in
alphabetical order:

LIST(1)="Second"
LIST(2)="Fourth"
LIST("AAA")="Third"
LIST("CCC")="First"

On the client, the Results property contains the following:

brkrRPCBroker1.Results[0]=Second
brkrRPCBroker1.Results[1]=Fourth
brkrRPCBroker1.Results[2]=Third
brkrRPCBroker1.Results[3]=First

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Results Example

Results Example

The following program code demonstrates using the Results
property:

procedure TForm1.btnSendClick(Sender: TObject);
begin
 {clears Results between calls}
 brkrRPCBroker1.ClearResults := True;
 {the following code returns a single value}
 brkrRPCBroker1.RemoteProcedure := 'SEND BACK SOME SINGLE
VALUE';
 brkrRPCBroker1.Call;
 Label1.Caption := 'Value returned is: ' +
brkrRPCBroker1.Results[0];
 {the following code returns several values}
 brkrRPCBroker1.RemoteProcedure := 'SEND BACK LIST OF
VALUES';
 brkrRPCBroker1.Call;
 ListBox1.Items := RPCBroker.Results;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > RPCBError Property

RPCBError Property (read-only)

Applies to

TRPCBroker component

Declaration
property RPCBError: String;

Description

The RPCBError property is available at run-time only. This read-only
property contains the Message property associated with the
exception or error that was encountered by the instance of the
TRPCBroker component.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > RPCTimeLimit Property

RPCTimeLimit Property

Example

Applies to

TRPCBroker component

Declaration
property RPCTimeLimit: Integer;

Description

The RPCTimeLimit property is a public integer property that is
available at run-time only. It specifies the length of time a client waits
for a response from an RPC. The default and minimum value of this
property is 30 seconds. If an RPC is expected to take more than 30
seconds to complete, adjust the RPCTimeLimit property accordingly.
However, it is not advisable to have an RPCTimeLimit that is too
long; otherwise, the client-end of the application appears to "hang", if
the VistA M Server does not respond in a timely fashion.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > RPCTimeLimit Example

RPCTimeLimit Example

The following program code demonstrates using the RPCTimeLimit
property:

procedure TForm1.Button1Click(Sender: TObject);
var
 intSaveRPCTimeLimit: integer;
begin
 brkrRPCBroker1.RemoteProcedure := 'GET ALL LAB RESULTS';
 brkrRPCBroker1.Param[0].Value := 'DFN';
 brkrRPCBroker1.Param[0].PType := reference;
 {save off current time limit}
 intSaveRPCTimeLimit := brkrRPCBroker1.RPCTimeLimit;
 {can take up to a minute to complete}
 brkrRPCBroker1.RPCTimeLimit := 60;
 brkrRPCBroker1.Call;
 {restore previous time limit}
 brkrRPCBroker1.RPCTimeLimit := intSaveRPCTimeLimit;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > RPCVersion Property

RPCVersion Property

Example

Applies to

TRPCBroker component

Declaration
property RPCVersion: String;

Description

The RPCVersion design-time property is a published string type
property used to pass the version of the RPC. This can be useful for
backward compatibility.

As you introduce new functionality into an existing RPC, your RPC
can branch into different parts of the code based on the value of the
RPCVersion property. The Broker sets the XWBAPVER variable on
the VistA M Server to the contents of the RPCVersion property. This
property cannot be empty and defaults to "0" (zero).

You can use the application version number in the RPCVersion
property.

 REF: For a suggested method for constructing version numbers,
see the Application Issues topic.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > RPCVersion Example

RPCVersion Example

In the following example, an RPC is first called with two parameters
that are added together and the sum returned to the client. Again,
this same RPC is called with the same parameters; however, this
time it uses a different RPC version value. Thus, the two numbers
are simply concatenated together and the resulting string is returned:

On the Client
procedure TForm1.Button1Click(Sender: TObject);
begin
 {make sure the results get cleared}
 brkrRPCBroker1.ClearResults := True;
 {just re-use the same parameters}
 brkrRPCBroker1.ClearParameters := False;
 brkrRPCBroker1.RemoteProcedure := 'MY APPLICATION REMOTE
PROCEDURE';
 brkrRPCBroker1.Param[0].Value := '333';
 brkrRPCBroker1.Param[0].PType := literal;
 brkrRPCBroker1.Param[1].Value := '444';
 brkrRPCBroker1.Param[1].PType := literal;
 brkrRPCBroker1.Call;
 {the result is 777}
 Label1.Caption := 'Result of the call: ' +
brkrRPCBroker1.Results[0];
 brkrRPCBroker1.RPCVersion := '2';
 brkrRPCBroker1.Call;
 {the result is 333444}
 Label2.Caption := 'Result of the call: ' +
brkrRPCBroker1.Results[0];
end;

On the Server
TAG(RESULT,PARAM1,PARAM2) ;Code for MY APPLICATION
REMOTE PROCEDURE
 IF XWBAPVER<2 SET RESULT=PARAM1+PARAM2
 ELSE SET RESULT=PARAM1_PARAM2
 QUIT RESULT

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Server Property

Server Property

Example

Applies to

TRPCBroker component

Declaration
property Server: String;

Description

The Server design-time property contains the name or Internet
Protocol (IP) address of the VistA M Server system. If the name is
used instead of the IP address, Microsoft Windows Winsock should
be able to resolve it. Winsock can resolve a name to an IP address
either through the Domain Name Service (DNS) or by looking it up in
the HOSTS file on the client workstation. In the case where the same
name exists in the DNS and in the HOSTS file, the HOSTS file entry
takes precedence. Changing the name of the VistA M Server while
the TRPCBroker component is connected disconnects the
TRPCBroker component from the previous server.

 REF: For common Winsock error messages, see the RPC
Broker "FAQ: Common Winsock Error/Status Messages" at the
following Intranet website:
redacted

http://vista.med.va.gov/broker/archive/docs/winsock.asp

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Server Example

Server Example

The following program code demonstrates using the Server property:

procedure TForm1.btnConnectClick(Sender: TObject);
begin
 brkrRPCBroker1.ListenerPort := 9999;
 brkrRPCBroker1.Server := 'DHCPSERVER';
 brkrRPCBroker1.Connected := True;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TParamType

TParamType

Unit

TRPCB

Declaration
TParamType = (literal, reference, list, global, empty,
stream, undefined);

Description

The TParamType type defines the possible values of the RPC
parameter type (PType property of TParamRecord class).

The global, empty, and stream values (added with RPC Broker
Patch XU*1.1*40) can only be used if a new-style (i.e., non-callback)
connection is present (and if these are to be used, it is
recommended that the TRPCBroker
IsBackwardCompatibleConnection be set to False to insure that only
a new-style connection can be made).

 CAUTION: Use of the undefined TParamType in applications
is not supported. It exists for the RPC Broker's internal use
only.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ServiceSection Property

ServiceSection Property

Applies to

TVistaUser class

Declaration
property ServiceSection: String;

Description

The ServiceSection property is available at run-time only. It holds the
user's service section from the NEW PERSON file (#200).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > ShowErrorMsgs Property

ShowErrorMsgs Property

Applies to

TRPCBroker component

Declaration
property ShowErrorMsgs: TShowErrorMsgs;

Description

The ShowErrorMsgs design-time property gives the developer the
ability to determine how an exception is handled, if an error handler
has not been provided through the OnRpcbError property (i.e., a
procedure property that is set to the name of a procedure that is called
if an error is encountered). If the OnRpcbError property is assigned,
then exception processing is delegated to that procedure. Otherwise,
exception handling is based on the value of ShowErrorMsgs property.

The following table lists the possible values:

Value Meaning

semRaise
(default)

This is the default value. The Broker does not handle
the error directly but passes it off to the application in
general to process, which can result in a different
message box display or some other type of error
indication.

semQuiet The error is not displayed or raised. This requires the
application to check the value of the RpcbError
property following calls to the Broker to determine
whether an error has occurred, and if so, what the
error was. This can be desirable, if the application
requires that errors not result in display boxes, etc., as

might be the case with an NT service or Web
application.

 NOTE: To illustrate the effects of TRPCBroker properties related
to error handling, run the "Error Handling Demo" application (i.e.,
XWBOnFail.EXE) located in the ..\BDK\Samples\SilentSignOn p [13]
directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Socket Property

Socket Property

Example

Applies to

TRPCBroker component

Declaration
property Socket: Integer;

Description

The Socket property is available at run-time only. It contains the
active port being used for the TCP/IP connection to the VistA M
Server. This is the port that is currently in use on the server as
opposed to the ListenerPort that was used to make the initial
connection. After the initial connection, the server connection is
moved to another port number (i.e., Socket), which is used for the
remainder of the session.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Socket Example

Socket Example

The following program code populates the Socket property with the
active port on the VistA M Server:

function ExistingSocket(Broker: TRPCBroker): integer;
var
 Index: integer;
begin
 Result := 0;
 if Assigned(BrokerConnections) and
 BrokerConnections.Find(Broker.Server + ':' +
IntToStr(Broker.ListenerPort), Index) then
 Result :=
TRPCBroker(BrokerConnections.Objects[Index]).Socket;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Sorted Property

Sorted Property

Example

Applies to

TMult class

Declaration
property Sorted: Boolean;

Description

The Sorted design-time property value determines the order of the
items in a TMult variable. If Sorted is True, the items are sorted in
ascending order of their string subscripts. If Sorted is False (default),
the items are unsorted, and appears in the order they were added.
Keep in mind that changing Sorted from False to True irreversibly
sorts the list so that changing Sorted back to False does not put the
list back in its original order, unless the original order was already
sorted of course.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Sorted Example

Sorted Example

The following program code demonstrates the effect the Sorted
property has on a TMult variable. Notice that by setting the Sorted
property back to False, the list does not revert to its unsorted order:

1. Start a new application.

2. Drop one memo and one button on the form. Arrange controls
as in the figure below (Step #4).

3. Copy the following code to the Button1.OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult1: TMult;
 Subscript: string;
begin
 //Create Mult1. Make Form1 its owner
 Mult1 := TMult.Create(Form1);
 //Fill Mult1 with some strings
 Mult1['First'] := 'One';
 Mult1['Second'] := 'Two';
 Mult1['Third'] := 'Three';
 Mult1['Fourth'] := 'Four';
 Mult1['Fifth'] := 'Five';
 //configure memo box for better display
 Memo1.Font.Name := 'Courier';
 Memo1.ScrollBars := ssVertical;
 Memo1.Lines.Clear;
 Memo1.Lines.Add('Natural order:');
 //set a starting point
 Subscript := '';
 repeat
 //get next Mult element
 Subscript := Mult1.Order(Subscript, 1);
 //if not the end of list

 if Subscript <> '' then
 //display subscript value
 Memo1.Lines.Add(Format('%10s', [Subscript]) + ' -
' + Mult1[Subscript])
 //stop when reached the end
 until Subscript = '';

 //list is now sorted alphabetically
 Mult1.Sorted := True;
 Memo1.Lines.Add('');
 Memo1.Lines.Add('Sorted order:');
 //set a starting point
 Subscript := '';
 repeat
 //get next Mult element
 Subscript := Mult1.Order(Subscript, 1);
 //if not the end of list
 if Subscript <> '' then
 //display subscript value
 Memo1.Lines.Add(Format('%10s', [Subscript]) + ' -
' + Mult1[Subscript])
 //stop when reached the end
 until Subscript = '';

 //existing entries remain in sorted order
 Mult1.Sorted := False;
 Memo1.Lines.Add('');
 Memo1.Lines.Add('Unsorted order:');
 //set a starting point
 Subscript := '';
 repeat
 //get next Mult element
 Subscript := Mult1.Order(Subscript, 1);
 //if not the end of list
 if Subscript <> '' then
 //display subscript value
 Memo1.Lines.Add(Format('%10s', [Subscript]) + '
- ' + Mult1[Subscript])
 //stop when reached the end
 until Subscript = '';
end;

4. Run project and click on the button.

Expected output:

You may have to scroll up and down to see all of the output.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > StandardName Property

StandardName Property

Applies to

TVistaUser class

Declaration
property StandardName: String;

Description

The StandardName property is available at run-time only. It holds the
user's standard name from the NEW PERSON file (#200).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TCCOWRPCBroker
Properties (Alpha)

TCCOWRPCBroker Properties
(All)

TCCOWRPCBroker Component

Unique Properties (available with the TCCOWRPCBroker
Component)

The following table lists all of the properties available with the
TCCOWRPCBroker component (includes those properties inherited
from the TRPCBroker parent component):

Read-
only

Run-
time
only

Property

BrokerVersion

CCOWLogonIDName

CCOWLogonIDValue

CCOWLogonName

CCOWLogonNameValue

CCOWLogonVpid

CCOWLogonVpidValue

 ClearParameters

 ClearResults

 Connected

 Contextor

CurrentContext

 DebugMode

 IsBackwardCompatibleConnection

IsNewStyleConnection

 KernelLogIn

 ListenerPort

 LogIn

 OldConnectionOnly

 OnRPCBFailure

 Param

 RemoteProcedure

 Results

RPCBError

 RPCTimeLimit

 RPCVersion

 Server

 ShowErrorMsgs

 Socket

 User

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TCCOWRPCBroker
Properties

TCCOWRPCBroker Properties
(Unique)

TCCOWRPCBroker Component

All Properties (available with the TCCOWRPCBroker
Component)

The following table lists the unique properties available with the
TCCOWRPCBroker component:

Read-
only

Run-
time
only

Property

CCOWLogonIDName

CCOWLogonIDValue

CCOWLogonName

CCOWLogonNameValue

CCOWLogonVpid

CCOWLogonVpidValue

 Contextor

 NOTE: Since the TCCOWRPCBroker component is a class
derived from the TRPCBroker component, it contains all of the
properties, methods, etc., of its parent.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Title Property

Title Property

Applies to

TVistaUser class

Declaration
property Title: String;

Description

The Title property is available at run-time only. It holds the user's title
from the NEW PERSON file (#200).

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TMult Properties

TMult Properties

TMult
Count

First

Last

Sorted

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TMult Example

TMult Example

The following program code demonstrates how to store and retrieve
elements from a TMult variable:

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult: TMult;
 Subscript: string;
 begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 {Store element pairs one by one}
 Mult['First'] := 'One';
 Mult['Second'] := 'Two';
 {Use double quotes for M strings}
 Mult['"First"'] := '"One"';
 {Label1.Caption gets "One"}
 Label1.Caption := Mult['"First"'];
 {Error! 'Third' subscripted element was never stored}
 Label1.Caption := Mult['Third'];
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TParamRecord Properties

TParamRecord Properties
TParamRecord
Mult

PType

Value

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TParamRecord Example

TParamRecord Example

The following program code demonstrates how you can use a
TParamRecord variable to save a copy of a single parameter of a
TRPCBroker component. This example assumes that prior to calling
this procedure, a TRPCBroker variable has been created and some
parameters have been set up. Pay close attention to how properties
are copied one at a time. This is the only way that a separate copy
could be created. If you try to simply assign one of the TRPCBroker
parameters to the TParamRecord variable, you simply re-point the
TParamRecord variable to that parameter:

procedure TForm1.Button1Click(Sender: TObject);
var
 ParamRecord: TParamRecord;
begin
 {Create ParamRecord. Make Form1 its owner}
 ParamRecord := TParamRecord.Create(Form1);
 {Store properties one at a time}
 ParamRecord.Value := RPCBroker.Param[0].Value;
 ParamRecord.PType := RPCBroker.Param[0].PType;
 {This is how to copy a Mult}
 ParamRecord.Mult.Assign(RPCBroker.Param[0].Mult);
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TParams Property

TParams Properties
TParams
Count

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TParams Example

TParams Example

The following program code demonstrates how a TParams class can
be used to save off the TRPCBroker component parameters and
restore them later:

procedure TForm1.Button1Click(Sender: TObject);
var
 SaveParams: TParams;
 SaveRemoteProcedure: string;
begin
 {create holding variable with Form1 as owner}
 SaveParams := TParams.Create(self);
 {save parameters}
 SaveParams.Assign(brkrRPCBroker1.Param);
 SaveRemoteProcedure := brkrRPCBroker1.RemoteProcedure;
 brkrRPCBroker1.RemoteProcedure := 'SOME OTHER PROCEDURE';
 brkrRPCBroker1.ClearParameters := True;
 brkrRPCBroker1.Call;
 {restore parameters}
 brkrRPCBroker1.Param.Assign(SaveParams);
 brkrRPCBroker1.RemoteProcedure := SaveRemoteProcedure;
 {release memory}
 SaveParams.Free;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TRPCBroker Properties

TRPCBroker Properties (All)
TRPCBroker Component

The following table lists all of the properties available with the
TRPCBroker component:

Read-
only

Run-
time
only

Property

BrokerVersion

 ClearParameters

 ClearResults

 Connected

CurrentContext

 DebugMode

 IsBackwardCompatibleConnection

IsNewStyleConnection

 KernelLogIn

 ListenerPort

 LogIn

 OldConnectionOnly

 OnRPCBFailure

 Param

 RemoteProcedure

 Results

RPCBError

 RPCTimeLimit

 RPCVersion

 Server

 ShowErrorMsgs

 Socket

 User

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TSharedBroker Properties
(Alpha)

TSharedBroker Properties (All)
TSharedBroker Component

Unique Properties (available with the TSharedBroker
Component)

The following table lists all of the properties available with the
TSharedBroker component (includes those properties inherited from
the TRPCBroker parent component):

Read-
only

Run-
time
only

Property

 AllowShared

BrokerVersion

 ClearParameters

 ClearResults

 Connected

CurrentContext

 DebugMode

 IsBackwardCompatibleConnection

IsNewStyleConnection

 KernelLogIn

 ListenerPort

 LogIn

 OldConnectionOnly

 OnConnectionDropped

 OnLogout

 OnRPCBFailure

 Param

 RemoteProcedure

 Results

RPCBError

 RPCTimeLimit

 RPCVersion

 Server

 ShowErrorMsgs

 Socket

 User

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TSharedBroker Properties

TSharedBroker Properties
(Unique)

TSharedBroker Component

All Properties (available with the TSharedBroker Component)

The following table lists the unique properties available with the
TSharedBroker component:

Read-
only

Run-
time
only

Property

 AllowShared

 OnConnectionDropped

 OnLogout

NOTE: Since TSharedBroker is a class derived from the
TRPCBroker component, it contains all of the properties, methods,
etc., of its parent.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TSharedRPCBroker
Properties (Alpha)

TSharedRPCBroker Properties
(All)

TSharedRPCBroker Component

Unique Properties (available with the TSharedRPCBroker
Component)

The following table lists all of the properties available with the
TSharedRPCBroker component (includes those properties inherited
from the TRPCBroker parent component):

Read-
only

Run-
time
only

Property

 AllowShared

BrokerVersion

 ClearParameters

 ClearResults

 Connected

CurrentContext

 DebugMode

 IsBackwardCompatibleConnection

IsNewStyleConnection

 KernelLogIn

 ListenerPort

 LogIn

 OldConnectionOnly

 OnConnectionDropped

 OnLogout

 OnRPCBFailure

 Param

 RemoteProcedure

 Results

RPCBError

 RPCTimeLimit

 RPCVersion

 Server

 ShowErrorMsgs

 Socket

 User

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TSharedRPCBroker
Properties

TSharedRPCBroker Properties
(Unique)

TSharedRPCBroker Component

All Properties (available with the TSharedRPCBroker
Component)

The following table lists the unique
properties available with the
TSharedRPCBroker component:

Read-
only

Run-
time
only

Property

 AllowShared

 OnConnectionDropped

 OnLogout

 NOTE: Since the TSharedRPCBroker component is a class
derived from the TRPCBroker component, it contains all of the
properties, methods, etc., of its parent.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TVistaLogin Properties

TVistaLogin Properties
TVistaLogin Class

The following table lists all of the properties available with the
TVistaLogin Class:

Read-
only

Run-
time
only

Property

 AccessCode

 Division

DivList

 DomainName

 DUZ

 ErrorText

 IsProductionAccount

 LoginHandle

 Mode

 MultiDivision

 OnFailedLogin

 PromptDivision

 VerifyCode

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TVistaUser Properties

TVistaUser Properties
TVistaUser Class

The following table lists all of the properties available with the
TVistaUser Class:

Read-
only

Run-
time
only

Property

 Division

 DTime

 DUZ

 Language

 Name

 ServiceSection

 StandardName

 Title

 VerifyCodeChngd

 Vpid

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > TXWBRichEdit Property

TXWBRichEdit Properties
TXWBRichEdit
URLDetect

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > URLDetect Property

URLDetect Property

Applies to

TXWBRichEdit component

Declaration
property URLDetect: Boolean;

Description

The URLDetect design-time property is used to create active ("live")
links in an application. If this property is set to True, URLs (http:,
mailto:, file:, etc.) are shown in blue and underlined. If the user clicks
on the URL, it opens the URL in the appropriate application. If the
property is False (the default), URLs appear as normal text and are
not active.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > User Property

User Property

Example

Applies to

TRPCBroker component

Declaration
property User: TVistaUser;

Description

The User property is available at run-time only. This instance of the
TVistaUser object is created during the Create process for the
TRPCBroker instance. The object contains data on the current user
and is updated as a part of the user authentication process.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Value Property

Value Property

Example

Applies to

TParamRecord class

Declaration
property Value: String;

Description

The Value design-time property is used to pass either a single string
or a single variable reference to the VistA M Server, depending on
the PType.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Value Example

Value Example

The following program code demonstrates a couple of different uses
of the Value property. Remember that each Param[x] element is
really a TParamRecord-type class.

procedure TForm1.Button1Click(Sender: TObject);
begin
 with brkrRPCBroker1 do begin
 RemoteProcedure := 'SET NICK NAME';
 {A variable reference}
 Param[0].Value := 'DUZ';
 Param[0].Ptype := reference;
 {A string}
 Param[1].Value := edtNickName.Text;
 Param[1].Ptype := literal;
 Call;
 end;
end;

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > VerifyCode Property

VerifyCode Property

Example

Applies to

TVistaLogin class

Declaration
property VerifyCode: String;

Description

The VerifyCode property is available at run-time only. It holds the
Verify code for lmAVCodes mode of Silent Login. Like the
AccessCode property, the user's Verify code is also encrypted before
it is transmitted to the VistA M Server.

 REF: For more information on Verify codes, see the "Part 1:
Sign-On/Security" section in the Kernel Systems Management
Guide.

 REF: For a demonstration using the lmAVCodes, run the
lmAVCodes_Demo.EXE located in the
..\BDK32\Samples\SilentSignOn directory.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > VerifyCodeChngd Property

VerifyCodeChngd Property

Applies to

TVistaUser class

Declaration
property VerifyCodeChngd: Boolean;

Description

The VerifyCodeChngd property is available at run-time only. It
indicates whether or not the user's Verify code has changed.

Home > RPC Broker Classes, Components. Units, Methods, and
Properties > Properties and Examples > Vpid Property

Vpid Property

Applies to

TVistaUser class

Declaration
property Vpid: String;

Description

The Vpid property is available at run-time only. It returns the
Department of Veterans Affairs Personal Identification (VPID) value
for the current user from the NEW PERSON file (#200), if the facility
has already been enumerated. If the facility has not been
enumerated, the value returned is a null string.

Home > Remote Procedure Calls (RPCs) > RPC Overview

RPC Overview

A Remote Procedure Call (RPC) is a defined call to M code that runs
on a VistA M Server. A client application, through the RPC Broker,
can make a call to the VistA M Server and execute an RPC on the
server. This is the mechanism through which a client application can:

Send data to a VistA M Server.

Execute code on a VistA M Server.

Retrieve data from a VistA M Server.

An RPC can take optional parameters to do some task and then
return either a single value or an array to the client application. RPCs
are stored in the REMOTE PROCEDURE file (#8994).

The following topics are covered:

What makes a good RPC?

Using an Existing M API

Creating RPCs

M Entry Point for an RPC:

Relationship Between an M Entry Point and an RPC

First Input Parameter (Required)

Return Value Types

Input Parameters (Optional)

Examples

RPC Entry in Remote Procedure File:

REMOTE PROCEDURE FIle

RPC Entry in the Remote Procedure File

RPC Version in the Remote Procedure File

Blocking an RPC in the Remote Procedure File

Cleanup after RPC Execution

Documenting RPCs

Executing RPCs from Clients:

How to Execute an RPC from a Client

RPC Security: How to Register an RPC

RPC Limits

RPC Time Limits

Maximum Size of Data

Maximum Size of Array

RPC Broker Example (32-Bit)

Home > Remote Procedure Calls (RPCs) > What makes a good
RPC?

What Makes a Good RPC?

The following characteristics help to make a good remote procedure
call (RPC):

Silent calls (no I/O to terminal or screen, no user intervention
required).

Minimal resources required (passes data in brief, controlled
increments).

Discrete calls (requiring as little information as possible from the
process environment).

Generic as possible (different parts of the same package as well
as other packages could use the same RPC).

Home > Remote Procedure Calls (RPCs) > Using an Existing M API

Using an Existing M API

In some cases an existing M API provides a useful M entry point for
an RPC. As with any M entry point, you need to add the RPC entry
that invokes the M entry point, in the REMOTE PROCEDURE file
(#8994).

 REF: See also: Relationship Between an M Entry Point and an
RPC.

Home > Remote Procedure Calls (RPCs) > Creating RPCs

Creating RPCs

You can create your own custom RPCs to perform actions on the
VistA M Server and to retrieve data from the VistA M Server. Then
you can call these RPCs from your client application. Creating an
RPC requires you to perform the following:

Write and test the M entry point that are called by the RPC.

Add the RPC entry that invokes the M entry point, in the
REMOTE PROCEDURE file (#8994).

Home > Remote Procedure Calls (RPCs) > M Entry Point for an
RPC > Relationship Between an M Entry Point and an RPC

Relationship Between an M
Entry Point and an RPC

An RPC can be thought of as a wrapper placed around an M entry
point for use with client applications. Each RPC invokes a single M
entry point.

An M entry point has defined input and output values/parameters
that are passed via the standard M invoking methods. An RPC,
however, needs to do the following:

Accept input from the Broker (i.e., passing data/parameters from
the client application).

Pass data to the M entry point in a specified manner.

Receive values back from the M code in a pre-determined
format.

Pass M code output back through the Broker to the client
application.

You can use the $$BROKER^XWBLIB function in M code to
determine whether the code is being run in an environment where it
was invoked by the Broker. This can help you use M code
simultaneously for Broker and non-Broker applications.

You can use the RPCVersion property to support multiple versions of
an RPC. The RPCVersion Example shows you how to do this on the
client and server sides.

Home > Remote Procedure Calls (RPCs) > M Entry Point for an
RPC > First Input Parameter (Required)

First Input Parameter
(Required)

The RPC Broker always passes a variable by reference in the first
input parameter to your M routine. It expects results (one of five
RETURN VALUE TYPEs) to be returned in this parameter. You must
always set some return value into that first parameter before your
routine returns.

Home > Remote Procedure Calls (RPCs) > M Entry Point for an RPC
> Return Value Types

Return Value Types

There are five RETURN VALUE TYPEs for RPCs as shown in the
table below. You should choose a return value type that is appropriate
to the type of data your RPC needs to return. For example, to return
the DUZ, a return value type of SINGLE VALUE would be appropriate.

The RETURN VALUE TYPE you choose determines what values you
should set into the return value parameter of your M entry point.

You should always set some value into the Return Value parameter of
the M entry point, even if your RPC encounters an error condition.

The following RPC settings, combined with your M entry point,
determine how data is returned to your client application:

RPC
Return

Value Type

How M Entry Point Should
Set the Return Parameter

RPC
Word
Wrap
On

Setting

Values
returned in

Client
Results

Single
Value

Set the return parameter to a
single value. For example:

No
effect

Value of
parameter, in

TAG(RESULT) ;
S RESULT="XWBUSER,ONE"
Q

Results[0].

Array Set an array of strings into the
return parameter, each
subscripted one level
descendant. For example:

TAG(RESULT) ;
S RESULT(1)="ONE"
S RESULT(2)="TWO"
Q

If your array is large, consider
using the GLOBAL ARRAY
return value type, to avoid
memory allocation errors.

No
effect Array values,

each in a
Results item.

Word
Processing

Set the return parameter the
same as you set it for the
ARRAY type. The only
difference is that the WORD
WRAP ON setting affects the
WORD PROCESSING return
value type.

True

False

Array values,
each in a
Results item.

Array values,
all
concatenated
into
Results[0].

Global
Array

Set the return parameter to a
closed global reference in
^TMP. The global's data nodes
are traversed using $QUERY,
and all data values on global
nodes descendant from the
global reference are returned.

True

False

Array values,
each in a
Results item.

Array values,
all
concatenated

This type is especially useful
for returning data from VA
FileMan WORD PROCESSING
type fields, where each line is
on a 0-subscripted node.

 CAUTION: The global
reference you pass is killed
by the Broker at the end of
RPC Execution as part of
RPC cleanup. Do not pass a
global reference that is not in
^TMP or that should not be
killed.

This type is useful for returning
large amounts of data to the
client, where using the ARRAY
type can exceed the symbol
table limit and crash your RPC.

For example, to return signon
introductory text you could do:

TAG(RESULT);
M ^TMP("A6A",$J)=
^XTV(8989.3,1,"INTRO")
;this node not needed
K ^TMP("A6A",$J,0)
S
RESULT=$NA(^TMP("A6A",$J))
Q

into
Results[0].

Global
Instance

Set the return parameter to a
closed global reference.

For example the following code
returns the whole 0th node
from the NEW PERSON file
(#200) for the current user:

TAG(RESULT) ;
S
RESULT=$NA(^VA(200,DUZ,0))
Q

No
effect

Value of
global node,
in Results[0].

 NOTE: In the M code called by an RPC, you can use the
$$RTRNFMT^XWBLIB function to change the RETURN VALUE
TYPE of an RPC on-the-fly.

Home > Remote Procedure Calls (RPCs) > M Entry Point for an RPC
> Input Parameters (Optional)

Input Parameters (Optional)

The M entry point for an RPC can optionally have input parameters
(i.e., beyond the first parameter, which is always used to return an
output value). The client passes data to your M entry point through
these parameters.

The client can send data to an RPC (and therefore your entry point)
in one of the following three Param types:

Param
PType

Param Value

literal Delphi string value, passed as a string literal to the VistA
M Server.

reference Delphi string value, treated on the VistA M Server as an
M variable name and resolved from the symbol table at
the time the RPC executes.

list A single-dimensional array of strings in the Mult property
of the Param property, passed to the VistA M Server
where it is placed in an array. String subscripting can be
used.

The type of the input parameters passed in the Param property of the
TRPCBroker component determines the format of the data you must
be prepared to receive in your M entry point.

Home > Remote Procedure Calls (RPCs) > M Entry Point for an
RPC > Examples

Examples

The following two examples illustrate sample M code that could be
used in simple RPCs:

1. This example takes two numbers and returns their sum:
SUM(RESULT,A,B) ;add two numbers
 S RESULT=A+B
 Q

2. This example receives an array of numbers and returns them as
a sorted array to the client:
SORT(RESULT,UNSORTED) ;sort numbers
 N I
 S I=""
 F S I=$O(UNSORTED(I)) Q:I="" S
RESULT(UNSORTED(I))=UNSORTED(I)
 Q

Home > Remote Procedure Calls (RPCs) > RPC Entry in the
Remote Procedure File > REMOTE PROCEDURE File

REMOTE PROCEDURE File

The RPC Broker consists of a single global that stores the REMOTE
PROCEDURE file:

File
#

File Name Global Location

8994 REMOTE
PROCEDURE

^XWB(8994,

This is the common file used by all applications to store all remote
procedure calls accessed via the Broker. All RPCs used by any site-
specific client/server application software using the RPC Broker
interface must be registered and stored in this file.

This file is used as a repository of server-based procedures in the
context of the Client/Server architecture. By using the Remote
Procedure Call (RPC) Broker, applications running on client
workstations can invoke (call) the procedures in this file to be
executed by the server and the results are returned to the client
application.

 NOTE: The RPC subfield (#19.05) of the OPTION File (#19)
points to RPC field (#.01) of the REMOTE PROCEDURE file
(#8994).

Home > Remote Procedure Calls (RPCs) > RPC Entry in the Remote
Procedure File > RPC Entry in the Remote Procedure File

RPC Entry in the Remote
Procedure File

After the M code is complete, you need to add the RPC to the
REMOTE PROCEDURE file (#8994). The following fields in the
REMOTE PROCEDURE file (#8994) are key to the correct operation
of an RPC:

Field Name Required? Description

NAME
(#.01)

Yes The name that identifies the RPC (this
entry should be namespaced in the
package namespace).

TAG (#.02) Yes The tag at which the remote procedure
call begins.

ROUTINE
(#.03)

Yes The name of the routine that should be
invoked to start the RPC.

WORD
WRAP ON
(#.08)

No Affects GLOBAL ARRAY and WORD
PROCESSING return value types only. If
set to False, all data values are returned
in a single concatenated string in

Results[0]. If set to True, each array node
on the M side is returned as a distinct
array item in Results.

RETURN
VALUE
TYPE
(#.04)

Yes This can be one of five types:

SINGLE VALUE

ARRAY

WORD PROCESSING

GLOBAL ARRAY

GLOBAL INSTANCE

This setting controls how the Broker
processes an RPC's return parameter.

Home > Remote Procedure Calls (RPCs) > RPC Entry in the
Remote Procedure File > RPC Version in the Remote Procedure File

RPC Version in the Remote
Procedure File

The VERSION field of the REMOTE PROCEDURE file (#8994)
indicates the version number of an RPC installed at a site. The field
can be set either by an application developer and exported by KIDS
or by a site manager using VA FileMan.

Applications can use XWB IS RPC AVAILABLE or XWB ARE RPCS
AVAILABLE to check the availability of a version of an RPC on a
server. This is especially useful for RPCs run remotely, as the
remote server may not have the latest RPC installed.

file:///C:/Users/VHAISPGABERR/AppData/Local/Temp/2/calibre_m1p2qvd0/5466otc3_pdf_out/RPC_Version_in_Remote_Procedure_File.htm

Home > Remote Procedure Calls (RPCs) > RPC Entry in the
Remote Procedure File > Blocking an RPC in the Remote Procedure
File

Blocking an RPC in the Remote
Procedure File

The INACTIVE field of the REMOTE PROCEDURE file (#8994)
allows blocking of RPCs. The blocking can apply to local access
(users directly logged into the site) or remote access (users logged
on to a different site) or both. The field can be set either by a
package developer and exported by KIDS or by a site manager
using VA FileMan.

Value in INACTIVE field
1 = Completely unusable

2 = Unusable locally

3 = Unusable remotely

Home > Remote Procedure Calls (RPCs) > RPC Entry in the
Remote Procedure File > Cleanup after RPC Execution

Cleanup after RPC Execution

The Broker uses XUTL^XUSCLEAN to clean up globals upon
application termination.

In addition, there is an RPC RETURN VALUE TYPE, GLOBAL
ARRAY, where the application RPC returns a closed form global
reference, for example:

^TMP("EKG",220333551)

The Broker kills the data for the global reference for this type of RPC
at the end of RPC execution.

Home > Remote Procedure Calls (RPCs) > RPC Entry in the
Remote Procedure File > Documenting RPCs

Documenting RPCs

Each individual application development team is responsible for
identifying and providing documentation for all object components,
classes, and remote procedure calls they create. Other developers
using these components need to know what RPCs are called,
because they need to register them with their applications.

RPCs should be documented in the DESCRIPTION field (#1) in the
REMOTE PROCEDURE file (#8994) for those RPCs installed on
your system. This gives you the capability of generating a catalogue
of RPCs from File #8994.

Delphi Component Library and
Sample RPCs

In the future, an Enterprise library of object components, classes,
and remote procedure calls that are in use and available to the
development community at large may be available. The essential
benefit of this type of library is the promotion of object re-use;
thereby, enhancing development productivity, application
consistency, and quality assurance. Therefore, it could contain a
wide variety of components, classes, and RPCs from many VistA
software applications.

The immediate intent is to classify and catalogue all of the object
classes in use (including the standard Delphi classes), and to make
the catalogue available to all interested. parties

Home > Remote Procedure Calls (RPCs) > Executing RPCs from
Clients > How to Execute an RPC from a Client Application

How to Execute an RPC from a
Client

1. If your RPC has any input parameters beyond the mandatory
first parameter, set a Param node in the TRPCBroker's Param
property for each. For each input parameter, set the following
sub-properties:

Value

PType (literal, list, or reference).

If the parameter's PType is list, however, instead of specifying a
value, instead set a list of values in the Mult property.

Here is an example of some settings of the Param property:

brkrRPCBroker1.Param[0].Value := '03/31/14';
brkrRPCBroker1.Param[0].PType := literal;
brkrRPCBroker1.Param[1].Mult['"NAME"'] := 'XWBUSER,
ONE';
brkrrpcbroker1.param[1].mult['"ssn"'] :="000-45-6789"
;/pre="">
brkrRPCBroker1.Param[1].PType := list;

2. Set the TRPCBroker's RemoteProcedure property to the name
of the RPC to execute:

brkrRPCBroker1.RemoteProcedure:='A6A LIST'

3. Invoke the Call method of the TRPCBroker component to
execute the RPC. All calls to the Call method should be done
within an exception handler try...except statement, so that all

communication errors (which trigger the EBrokerError
exception) can be trapped and handled. For example:

try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('A problem was encountered
communicating with the server.');
end;

4. Any results returned by your RPC are returned in the
TRPCBroker component's Results property. Depending on how
you set up your RPC, results are returned either in a single node
of the Results property (Results[0]), or in multiple nodes of the
Results property.

 NOTE: You can also use the lstCall and strCall methods to
execute an RPC. The main difference between these methods and
the Call method is that lstCall and strCall do not use the Results
property, instead returning results into a location you specify.

Home > Remote Procedure Calls (RPCs) > Executing RPCs from
Clients > RPC Security: How to Register an RPC

RPC Security: How to Register
an RPC

Security for RPCs is handled through the RPC registration process.
Each client application must create a context for itself, which checks
if the application user has access to a "B"-type option in the Kernel
menu system. Only RPCs assigned to that option can be run by the
client application.

To enable your application to create a context for itself:

1. Create a "B"-type option in the OPTION file (#19) for your
application.

 NOTE: The OPTION TYPE "B" represents a Broker
client/server type option.

2. In the RPC multiple for this option type, add an entry for each
RPC that your application calls. The following fields can be set
up for each RPC in your option:

Field
Name

(#)

Entry Description

RPC
(#.01)

Required This field is used to enter a pointer to the
REMOTE PROCEDURE file (#8994). This
field links the remote procedure call in the
REMOTE PROCEDURE file (#8994) to the
package option.

RPCKEY
(#1)

Optional This field is used to restrict the use of a
remote procedure call to a particular
package option. The RPCKEY field is a
free-text pointer to the SECURITY KEY file
(#19.1).

RULES
(#2)

Optional This field is used to enter M code that is
executed when an RPC request is made to
verify whether the request should be
honored.

3. When you export your package using Kernel Installation and
Distribution System (KIDS), export both your RPCs and your
package option. KIDS automatically associates the RPCs with
the package option.

4. Your application must create a context for itself on the VistA M
Server, which checks access to RPCs. In the initial code of your
client application, make a call to the CreateContext method of
your TRPCBroker component. Pass your application's "B"-type
option's name as a parameter. For example:

if not brkrRPCBroker1.CreateContext(option_name) then
 Application.Terminate;

If the CreateContext method returns True, only those RPCs
designated in the RPC multiple of your application option is
permitted to run.

If the CreateContext method returns False, you should terminate
your application (if you do not, your application runs but you get
errors every time you try to access an RPC).

5. End-users of your application must have the "B"-type option
assigned to them on one of their menus, in order for
CreateContext to return True. This allows system managers to
control access to client applications.

Home > Remote Procedure Calls (RPCs) > Executing RPCs from
Clients > RPC Limits

RPC Limits

The following is a list of various constants, maximum, and minimum
parameters associated with the use of the RPC Broker:

Maximum number of parameters that can be passed to the
VistA M Server.

Maximum size of array that can be passed to the VistA M
Server.

Maximum size of data that can be received in the VistA
Graphical User Interface (GUI) application from the VistA M
Server.

RPC Time limit.

Home > Remote Procedure Calls (RPCs) > Executing RPCs from
Clients > RPC Time Limits

RPC Time Limits

A public READ/WRITE property (i.e., RPCTimeLimit) allows the
application to change the network operation timeout prior to a call.
This can be useful during times when it is known that a certain RPC,
by its nature, can take a significant amount of time to execute. The
value of this property is an integer that cannot be less than 30
seconds nor greater that 32767 seconds. Care should be taken
when altering this value, since the network operation blocks the
application until the operation finishes or the timeout is triggered.

There is also a server time limit for how long to stay connected when
the client does not respond.

Home > Remote Procedure Calls (RPCs) > Executing RPCs from
Clients > Maximum Size of Data

Maximum Size of Data

The VistA M Server can transmit very large buffers of data back to
the Microsoft® Windows client. The Windows client receives the
returned data from an RPC into a 32-bit PASCAL string. RPCs can
be written on the VistA M Server so that they store their results in an
M GLOBAL structure, which can span RAM and disk storage media.
This GLOBAL storage could be quite large depending on the
assigned system quotas to the VistA M Server process. The return of
the RPC can deliver this quantity to the Windows client. The actual
limit depends on the capacity that the Microsoft® Windows operating
system allows the client to process. Tests on a 32-megabyte RAM
system have allowed buffers of several megabytes of data to be
transmitted from the VistA M Server to the Microsoft® Windows
client.

Home > Remote Procedure Calls (RPCs) > Executing RPCs from
Clients > Maximum Number of Parameters

Maximum Number of
Parameters

The remote procedure calls (RPCs) become M DO procedures on
the VistA M Server. Since RPCs are communicated to the VistA M
Server through a message mechanism, additional information is
included with the message.

Parameters are processed as PASCAL short strings with a maximum
of 255 characters. Each parameter is encoded with a three-character
length plus a type character. Therefore, every parameter occupies
length (parameter) + four. The maximum transmission at this time is
240 characters, since additional header information is present with
every RPC.

A theoretical maximum, where every parameter was length 1 would
give number of parameters = 240/5 or 48 parameters. A single
parameter (e.g., a long string) could not exceed 240 - 4, or 236
characters. Future support will be based on the PASCAL 32-bit
string, which can, theoretically, reach 2 GB. Limitations on the VistA
M Server still limit this to far less, however.

Home > Remote Procedure Calls (RPCs) > Executing RPCs from
Clients > Maximum Size of Array

Maximum Size of Array

Although approximately only 240 characters can be sent to the VistA
M Server as call parameters, a single array parameter can be
passed in with greater capacity. The RPC can carry both literal and
array parameters except that literal parameters are placed first and
the single array last in order. Arrays are instantiated at the VistA M
Server and are stored in a local array format. The maximum size is
dependent on the symbol space available to the VistA M Server
process. The index size and the value size are subject to limitations;
the index and value each cannot exceed 255 - 3, or 252 characters
approximately for each individual array elements.

At the time of this writing, 30 to 40 K arrays have easily been passed
to the VistA M Server in a single RPC call.

Home > Remote Procedure Calls (RPCs) > Executing RPCs from
Clients > RPC Broker Example (32-Bit)

RPC Broker Example (32-Bit)

The RPC Broker Example sample application provided with the BDK
(i.e., BrokerExample.EXE, located in the
..\BDK32\Samples\BrokerEx directory) demonstrates the basic
features of developing RPC Broker applications, including:

Connecting to a VistA M Server.

Creating an application context.

Using the GetServerInfo function.

Displaying the VistA splash screen.

Setting the TRPCBroker.Param property for each Param PType
(literal, reference, list).

Calling RPCs with the Call method.

Calling RPCs with the lstCall and strCall methods.

The client source code files for the BrokerExample application are
located in the ..\BDK32\Samples\BrokerEx directory.

 NOTE: Initially, use Delphi to compile the BrokerExample.DPR
into an executable.

Home > Other RPC Broker APIs > Overview: Other APIs

Overview: Other RPC Broker
APIs

The Broker Development Kit (BDK) provides the following
development APIs in addition to the RPC Broker components:

Encryption Functions

M Emulation Functions

XWB ARE RPCS AVAILABLE

XWB IS RPC AVAILABLE

GetServerInfo Function

VistA Splash Screen Procedures

XWB GET VARIABLE VALUE RPC

Running RPCs on a Remote Server

Deferred RPCs

The RPC Broker software provides the following application program
interfaces (APIs) on the VistA M Server for use in RPC code:

$$BROKER^XWBLIB (Determine if running from a Broker call)

$$RTRNFMT^XWBLIB (Change return format of RPC)

Home > Other RPC Broker APIs > HANDLE

HANDLE

A HANDLE is a string returned by XWB REMOTE RPC or XWB
DEFERRED RPC. The application should store the HANDLE and
use it to:

1. Check for the return of the data.

2. Retrieve the data.

3. Clear the data from the VistA M Server.

Home > Other RPC Broker APIs > Functions, Methods, and Procedures
> $$BROKER^XWBLIB

$$BROKER^XWBLIB

Use this function in the M code called by an RPC to determine if the
current process is being executed by the RPC Broker.

Format
$$BROKER^XWBLIB

Input

None

Output

Return Value
Results:

1—If the current process is being executed by
the Broker.

0—If the current process is not being executed
by the Broker.

Example
I $$BROKER^XWBLIB D
.; broker-specific code

Home > Other RPC Broker APIs > Functions, Methods, and Procedures
> $$RTRNFMT^XWBLIB

$$RTRNFMT^XWBLIB

Use this function in the M code called by an RPC to change the return
value type that the RPC returns on-the-fly.

Format
$$RTRNFMT^XWBLIB(type, wrap)

Input

type Set this to the RETURN VALUE TYPE to change the RPC's
setting to. Set it to one of the following numeric or free text
values:

numeric free text

1 SINGLE
VALUE

2 ARRAY

3 WORD
PROCESSING

4 GLOBAL
ARRAY

5 FOR GLOBAL
INSTANCE

wrap Set to 1 to set the RPC's WORD WRAP ON setting to

True.

Set to 0 to set the RPC's WORD WRAP ON setting to
False.

Output

Return
Value

Returns:

0—If the return value type could not be changed.

numeric code—Representing the return value type to
which the RPC is changed.

Example

I '$$RTRNFMT^XWBLIB("ARRAY",1) D

.; branch to code if cannot change RPC type

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > XWB GET VARIABLE VALUE

XWB GET VARIABLE VALUE

Example

You can call the XWB GET VARIABLE VALUE RPC (distributed with
the RPC Broker) to retrieve the value of any M variable in the VistA
M Server environment. Pass the variable name in Param[0].Value,
and the type (reference) in Param[0].PType. Also, the current context
of your user must give them permission to execute the XWB GET
VARIABLE VALUE RPC (it must be included in the RPC multiple of
the "B"-type option registered with the CreateContext function).

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > XWB GET VARIABLE VALUE Example

XWB GET VARIABLE VALUE
Example

The following is example of the XWB GET VARIABLE VALUE RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB GET VARIABLE VALUE';
brkrRPCBroker1.Param[0].Value :='DUZ';
brkrRPCBroker1.Param[0].PType := reference;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
ShowMessage('DUZ is '+brkrRPCBroker1.Results[0]);

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > M Emulation Functions

M Emulation Functions

Examples

Piece Function

The Piece function is a scaled down Pascal version of M's $PIECE
function. It is declared in MFUNSTR.PAS.

function Piece(x: string; del: string; piece: integer) :
string;

Translate Function

The Translate function is a scaled down Pascal version of M's
$TRANSLATE function. It is declared in MFUNSTR.PAS.

function Translate(passedString, identifier, associator:
string): string;

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > M Emulation Examples

M Emulation Examples

Piece Function
Piece3Str:=piece('123^456^789','^',3);

Translate Function
hiStr:=translate('HI','ABCDEFGHI','abcdefghi');

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > Encryption Functions

Encryption Functions

Kernel and the RPC Broker provide encryption functions that can be
used to encrypt messages sent between the client and the server.

In Delphi

Include HASH in the "uses" clause of the unit in which you are
encrypting or decrypting.

Function prototypes are as follows:

function Decrypt(EncryptedText: string): string;

function Encrypt(NormalText: string): string;

On the VistA M Server

To encrypt:
KRN,KDE>S CIPHER=$$ENCRYP^XUSRB1("Hello world!") W CIPHER
/U'llTG~TVl&f-

To decrypt:

KRN,KDE>S PLAIN=$$DECRYP^XUSRB1(CIPHER) W PLAIN
Hello world!

These encryption functions can be used for any communication
between the client and the server where encryption is desired.

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > CheckCmdLine Function

CheckCmdLine Function

With Patch XWB*1.1*13, the CheckCmdLine method was changed
from a procedure to a function with a Boolean return value.

function CheckCmdLine(SLBroker: TRPCBroker): Boolean;

Argument

Argument Description

SLBroker The instance of the Broker with which information on
the command line should be used, and to be used for
the connection, if a Silent Login is possible.

Result

The return value indicates whether the information on the command
line was sufficient to connect the RPCBroker instance to the specified
Server/ListenerPort.

True—Broker is connected to the VistA M Server.

False—Broker is not connected to the VistA M Server.

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > GetServerInfo Function

GetServerInfo Function

Example

The GetServerInfo function retrieves the end-user's selection of
server and port to which to connect. Use this function to set a
TRPCBroker component's Server and ListenerPort properties to
reflect the end-user's choice before connecting to the VistA M
Server.

If there is more than one server/port from which to choose,
GetServerInfo displays an application window that allows users to
select a service to connect:

Syntax:
function GetServerInfo(var Server, Port: string): integer;

 NOTE: The unit is RpcConf1.

The GetServerInfo function handles the following scenarios:

If there are no values for server and port in the Windows
Registry, GetServerInfo does not display its dialogue window,
and the automatic default values returned are
BROKERSERVER/9999. GetServerInfo returns mrOK.

If exactly one server and port entry is defined in the Windows
Registry, GetServerInfo does not display its dialogue window.
The values in the single Windows Registry entry are returned to
the calling application, with no user interaction. GetServerInfo
returns mrOK.

If more than one server and port entry exists in the Windows
Registry, the dialogue window is displayed. The only time that
passed in server and port values are returned to the calling
application is if the user clicks Cancel. However, if a user
selects an entry and clicks OK, the server and port parameters
are changed and returned to the calling application.
GetServerInfo returns mrOK if the user clicked OK, or
mrCancel if the user clicked Cancel.

 REF: For a demonstration using the Broker and GetServerInfo
function, run the RPC Broker Example (i.e., BrokerExample.EXE)
located in the ..\BDK32\Samples\BrokerEx directory.

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > GetServerInfo Example

GetServerInfo Example

The following is example of the GetServerInfo function:

procedure TForm1.btnConnectClick(Sender: TObject);
var
 strServer, strPort: string;
begin
 if GetServerInfo(strServer, strPort)<> mrCancel then
begin {getsvrinfo begin}
 brkrRPCBroker1.Server := strServer;
 brkrRPCBroker1.ListenerPort := StrToInt(strPort);
 brkrRPCBroker1.Connected := True;
 {getsvrinfo end}
 end;
end;

 REF: For a demonstration using the Broker and GetServerInfo
function, run the RPC Broker Example (i.e., BrokerExample.EXE)
located in the ..\BDK32\Samples\BrokerEx directory.

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > GetServerIP Function

GetServerIP Function

Example

The GetServerIP function provides a means for determining the
Internet Protocol (IP) address for a specified VistA M Server
address. The value returned is a string containing the IP address, or
if it could not be resolved, the string "Unknown!"

function GetServerIP(ServerName: string): string;

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > GetServerIP Example

GetServerIP Example

The following is example of the GetServerIP function:

 // include the unit RpcConf1 in the Uses clause
 // An edit box on the form is assumed to be named
edtIPAddress

 // Another edit box (edtInput) is used to input a
desired server name

uses RpcConf1;

procedure Tform1.Button1Click(Sender: TObject);
var
 ServerName: string;
begin

ServerName := 'xxxxx.xxx.xxx.xxx';
edtIPAddress.Text := GetServerIP(edtInput.Text);

// For xxxxx.xx.xxx returns '999.999.9.99' // For
garbage returns 'Unknown!'

end;

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > ChangeVerify Function

ChangeVerify Function

The ChangeVerify function can be used to provide the user with the
ability to change his/her Verify code.

function ChangeVerify(RPCBroker: TRPCBroker): Boolean;

Argument

Argument Description

RPCBroker The Broker instance for the account on which the
Verify code is to be changed.

Result

The return value indicates whether the user changed their Verify
code or not.

True—User changed their Verify code.

False—User did not change their Verify code.

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > SilentChangeVerify Function

SilentChangeVerify Function

The SilentChangeVerify function can be used to change the Verify
code for a user without any dialogue windows being displayed.

function SilentChangeVerify(RPCBroker: TRPCBroker;
OldVerify,
 NewVerify1, NewVerify2: String; var Reason: String):
Boolean;

Arguments

Argument Description

RPCBroker The current instance of the Broker for the account for
which the Verify code is to be changed.

OldVerify The string representing the current Verify code for the
user.

NewVerify1 A string representing the new Verify code for the user.

NewVerify2 A second independent entry for the string
representing the new Verify code for the user.

Reason A string that on return contains the reason why the
Verify code was not changed (if the result value is
False).

Result

The return value indicates whether the Verify code was successfully
changed or not:

True—Verify code was successfully changed.

False— Verify code was not successfully changed. The reason
for the failure is in the Reason argument.

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > StartProgSLogin Method

StartProgSLogin Method

The StartProgSLogin method can be used to initiate another program
with information sufficient for a Silent Login, or it can be used to
launch a standalone program that does not use a TRPCBroker
connection. If the program is being used to launch another
executable with information for a Silent Login, it is recommended that
the CheckCmdLine function be used in the program being launched
(since this function uses the command line information to make a
Silent Login if possible).

procedure StartProgSLogin(const ProgLine: String;
ConnectedBroker: TRPCBroker);

Arguments

Argument Description

ProgLine This is the command line that should be used
as the basis for launching the executable. It
contains the executable (and path, if not in the
working directory or in the system path) and
any command line arguments desired. If the
ConnectedBroker argument is not nil, then the
VistA M Server address, ListenerPort, Division,
and ApplicationToken is added to the command
line and the application launched.

ConnectedBroker This is the instance of the TRPCBroker that
should be used to obtain an ApplicationToken
for a Silent Login. The VistA M Server address
and ListenerPort for this instance are used as
command line arguments for launching the
application, so that it makes a connection to the
same Server/ListenerPort combination. If the
application to be launched is not related to the
TRPCBroker, then this argument should be set
to nil.

Example 1

To launch a program, Sample1.exe, with command line arguments
xval=MyData and yval=YourData, and connect with a Silent Login
(which would be handled in Sample1.exe via the CheckCmdLine
function):

MyCommand := 'C:\Program Files\VISTA\Test1\Sample1.exe
xval=MyData yval=YourData';
StartProgSLogin(MyCommand, RPCBroker1);

This results in the following command line being used to launch the
application:

C:\Program Files\VISTA\Test1\Sample1.exe xval=MyData
yval=YourData s=ServerName p=9999 d=Division
h=AppHandleValue

Example 2

To launch a program unrelated to TRPCBroker and VistA M Server
connections (e.g., Microsoft® Notepad), the command line as desired
is used as the first argument, and the value nil is used as the second
argument:

MyCommand := 'Notepad logtable.txt';
StartProgSLogin(MyCommand, nil);

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > VistA Splash Screen Procedures

VistA Splash Screen
Procedures

Example

Two procedures in SplVista.PAS unit are provided to display a VistA
Splash Screen when an application loads:

procedure SplashOpen;

procedure SplashClose(TimeOut: longint);

It is recommended that the VistA Splash Screen be opened and
closed in the section of Pascal code in an application's project file
(i.e., .DPR).

Using a Splash Screen in an
Application

To use the VistA Splash Screen in an
application:

1. Open the application's project (.DPR) file. In Delphi:

a. Select View.

b. Select Project Source.

2. Include the SplVista in the uses clause of the project source.

3. Call SplashOpen immediately after the first form of your
application is created and call SplashClose just prior to invoking
the Application.Run method.

4. Use the TimeOut parameter to ensure a minimum display time.
The TimeOut parameter is the minimum number of milliseconds
the splash screen is displayed to the user.

The VistA Splash Screen is illustrated below:

 REF: For a demonstration using the VistA Splash Screen, run
the RPC Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > Other RPC Broker APIs > Functions, Methods, and
Procedures > VistA Splash Screen Example

VistA Splash Screen Example

The following is example of displaying the VistA Splash Screen in an
application:

uses
 Forms, Unit1 in 'Unit1.pas', SplVista;

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 SplashOpen;
 SplashClose(2000);
 Application.Run;
end.

 REF: For a demonstration using the VistA Splash Screen, run
the RPC Broker Example (i.e., BrokerExample.EXE) located in the
..\BDK32\Samples\BrokerEx directory.

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > Overview: Running RPCs on a Remote Server

Overview: Running RPCs on a
Remote Server

The RPC Broker can be used to facilitate invocation of Remote
Procedure Calls on a remote VistA M Server. Applications can use
either XWB DIRECT RPC or XWB REMOTE RPC to pass:

The desired remote VistA M Server.

The desired remote RPC.

Any parameters for the remote RPC.

The RPC Broker on the local VistA M Server uses VistA HL7 as a
vehicle to pass the remote RPC name and parameters to the remote
VistA M Server. VistA HL7 is used to send any results from the
remote server back to the local server. The RPC Broker on the local
VistA M Server then passes the results back to the client application.

 NOTE: The local VistA M Server is the server the user is logged
into. The remote VistA M Server is any server the user is not logged
into.

Using Direct RPCs

RPC Description

XWB
DIRECT
RPC

This RPC blocks all other Broker calls until the results
of the remote RPC are returned. The data is passed
and the user waits for the results to return from the
remote system.

Using Remote RPCs

RPC Description

XWB
REMOTE
RPC

This RPC allows other activity while the remote RPC
is in process. In response to XWB REMOTE RPC the
local VistA M Server returns a HANDLE to the user
application. At this point other Broker calls may
commence while the server-to-server communication
continues in the background.

XWB
REMOTE
STATUS
CHECK

This RPC allows the application to check the local
VistA M Server for the presence of results from the
remote RPC. This RPC passes the HANDLE to the
local server and receives back the status of the
remote RPC.

XWB
REMOTE
GETDATA

This RPC retrieves the results from the remote RPC
after the status check indicates that the data has
returned to the local VistA M Server. The RPC passes
the HANDLE and receives back an array with
whatever data has been sent back from the remote
site.

XWB
REMOTE
CLEAR

This RPC must be used to clear the data under the
HANDLE in the ^XTMP Global.

XWB
DEFERRED
CLEARALL

Applications using XWB REMOTE XWB should use
XWB DEFERRED CLEARALL on application close to
clear all known data associated with the job on the
VistA M Server.

 NOTE: XWB DIRECT RPC and XWB REMOTE RPC are
available only on a controlled subscription basis.

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > Checking RPC Availability on a Remote Server

Checking RPC Availability on a
Remote Server

Applications can check the availability of RPCs on a remote VistA M
Server. Use either of the following:

XWB DIRECT RPC

XWB REMOTE RPC

To pass either of the following:

XWB IS RPC AVAILABLE (example)

XWB ARE RPCS AVAILABLE (example)

To the remote server.

The Run Context Parameter in XWB IS RPC AVAILABLE or XWB
ARE RPCS AVAILABLE should be set to "R" or null to check that the
remote VistA M Server allows RPCs to be run by users not logged
into that remote server.

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB ARE RPCS AVAILABLE

XWB ARE RPCS AVAILABLE

Example

Checking RPC Availability on a Remote Server

Use this RPC to determine if a set of RPCs is available on a VistA M
Server. The RUN CONTEXT PARAMETER allows you to test
availability on a local or remote VistA M Server. The RPC INPUT
PARAMETER passes the names and (optionally) minimum version
number of the RPCs to be checked.

Output Description

RETURN
VALUE

A 0-based array. The index corresponds to the
index of the RPC in the RPC Input Parameter:

1—RPC Available.

0—RPC Not available.

RUN
CONTEXT

Pass the run context (local or remote) of the RPC
in Param[0].Value, and the type (literal) in
Param[0].PType. Possible values:

PARAMETER
(Optional)

L—Check if available to be run locally (by a
user logged into the VistA M Server).

R—Check if available to be run remotely (by
a user logged in a different VistA M Server).

If this parameter is not sent, the RPC is checked
for both local and remote, and both run contexts
must be available for the return to be "1" (RPC
Available). The check is done against the
INACTIVE field in the REMOTE PROCEDURE
file.

RPC INPUT
PARAMETER

Pass a 0-based array of the names and
(optionally) version numbers of RPCs to be tested
in Param[1].Mult[], and the type (List) in
Param[1].PType. The format is:

RPCName^RPCVersionNumber

The RPCVersionNumber is used only if the Run
Context parameter = "R". If a numeric value is in
the second ^-piece and Run Context = "R", it is
checked against the value in the VERSION field of
the REMOTE PROCEDURE file. If the version
number passed is less than or equal to the
number in the VERSION field, the RPC is marked
available.

 NOTE: If the VERSION field is null, the check
fails for a numeric value in this parameter.

Also, the current context of your user must give them permission to
execute the XWB ARE RPCS AVAILABLE (it must be included in the
RPC multiple of the "B"-type option registered with the CreateContext
function).

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB ARE RPCS AVAILABLE Example

XWB ARE RPCS AVAILABLE
Example

The following is example of the XWB ARE RPCS AVAILABLE RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB ARE RPCS AVAILABLE';
brkrRPCBroker1.Param[0].Ptype:= Literal;
brkrRPCBroker1.Param[0].Value := 'L';
brkrRPCBroker1.Param[1].Ptype := List;
brkrRPCBroker1.Param[1].Mult['0'] = 'MY FIRST RPC';
brkrRPCBroker1.Param[1].Mult['1'] = 'MY OTHER RPC^2';
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
.; branch code to handle availability of RPCs

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB IS RPC AVAILABLE

XWB IS RPC AVAILABLE

Example

Checking RPC Availability on a Remote Server

Use this RPC to determine if a particular RPC is available on a VistA
M Server. The RPC PARAMETER passes the name of the RPC to be
checked. The RUN CONTEXT PARAMETER allows you to test
availability to a local or a remote user. The VERSION NUMBER
PARAMETER allows you to check for a minimum version of an RPC
on a remote VistA M Server.

Parameter/Output Description

RETURN VALUE Boolean:

1—RPC Available

0—RPC Not Available

RPC PARAMETER Pass the name of the RPC to be tested in
Param[0].Value, and the type (literal) in
Param[0].PType.

RUN CONTEXT
PARAMETER
(Optional)

Pass the run context (local or remote) of the
RPC in Param[1].Value, and the type (literal) in
Param[1].PType. Possible values:

L—Check if available to be run locally (by
a user logged into the VistA M Server)

R—Check if available to be run remotely
(by a user logged in a different VistA M
Server)

If this parameter is not sent, the RPC is
checked for both local and remote and both
run contexts must be available for the return to
be "1" (RPC Available). The check is done
against the INACTIVE field in the REMOTE
PROCEDURE file.

VERSION
NUMBER
PARAMETER
(Optional)

Pass the minimum acceptable version number
of the RPC in Param[2].Value, and the type
(literal) in Param[2].PType. This parameter is
only used if the RUN CONTEXT parameter =
"R". If a numeric value is in this parameter, it is
checked against the value in the VERSION
field of the REMOTE PROCEDURE file. If the
version number passed is less than or equal to
the number in the VERSION field, the RPC is
marked available.

 NOTE: If the VERSION field is null, the
check fails for a numeric value in this

parameter.

Also, the current context of your user must give them permission to
execute the XWB IS RPC AVAILABLE (it must be included in the
RPC multiple of the "B"-type option registered with the CreateContext
function).

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB IS RPC AVAILABLE Example

XWB IS RPC AVAILABLE
Example

The following is example of the XWB IS RPC AVAILABLE RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB IS RPC AVAILABLE';
brkrRPCBroker1.Param[0].Value :='XWB GET VARIABLE VALUE';
brkrRPCBroker1.Param[0].PType := literal;
brkrRPCBroker1.Param[1].Value := 'R';
brkrRPCBroker1.Param[1].PType := literal;
 {no version number passed in this example as XWB GET
VARIABLE VALUE has only one version}
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
.; branch code to handle RPC availability

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB DIRECT RPC

XWB DIRECT RPC

Example

Use this RPC to request that an RPC be run on a remote system.
This RPC blocks all other Broker calls until the results of the remote
RPC are returned. Use XWB REMOTE RPC to allow other Broker
activity while the remote RPC runs.

 REF: For a comparison of the two methods, see the "Options For
Running RPCs on a Remote Server" topic.

Parameter/Output Description

LOCATION
PARAMETER

Pass the station number of the remote VistA M
Server in Param[0].Value, and the type (literal)
in Param[0].PType.

RPC PARAMETER Pass the name of the RPC to be run in
Param[1].Value, and the type (literal) in
Param[1].PType.

RPC VERSION Pass minimum version of RPC to be run in

PARAMETER
(Optional)

Param[2].Value, and the type (literal) in
Param[2].PType. It is checked against the
value in the VERSION field of the REMOTE
PROCEDURE file on the remote VistA M
Server.

PARAMETERS TO
THE REMOTE
RPC

Pass up to seven parameters for the remote
RPC in Param[3] through Param[9].

RETURN VALUE An array with whatever data has been sent
back from the remote site. In the case of an
error condition, the first node of the array is
equal to a string with the syntax "-1^error text".

 NOTE: XWB DIRECT RPC is available only on a controlled
subscription basis.

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB DIRECT RPC Example

XWB DIRECT RPC Example

The following is example of the XWB DIRECT RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB DIRECT RPC';
brkrRPCBroker1.Param[0].Ptype:= Literal;
brkrRPCBroker1.Param[0].Value := 'Station Number';
brkrRPCBroker1.Param[1].Ptype:= Literal;
brkrRPCBroker1.Param[1].Value := 'XWB GET VARIABLE VALUE';
{no version numbers for remote RPC so null value in
Param[2]}
brkrRPCBroker1.Param[2].Ptype:= Literal;
brkrRPCBroker1.Param[2].Value := '';
brkrRPCBroker1.Param[3].Ptype:= Reference;
brkrRPCBroker1.Param[3].Value := 'DUZ';
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
.; code to handle brkrRPCBroker1.Results[]

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB REMOTE RPC

XWB REMOTE RPC

Example

Use this RPC to request that an RPC be run on a remote system.
This RPC allows other Broker activity while the remote RPC runs.
Use XWB DIRECT RPC to block all other Broker activity while the
remote RPC runs.

 REF: For a comparison of the two methods, see the "Options For
Running RPCs on a Remote Server" topic.

XWB REMOTE RPC requests the remote RPC. The return value is a
HANDLE that is used to check status and retrieve data. The following
RPCs must be used to complete the transaction

XWB REMOTE STATUS CHECK

XWB REMOTE GETDATA

XWB REMOTE CLEAR

Parameter/Output Description

LOCATION
PARAMETER

Pass the station number of the remote VistA M
Server in Param[0].Value, and the type (literal)
in Param[0].PType.

RPC
PARAMETER

Pass the name of the RPC to be run in
Param[1].Value, and the type (literal) in
Param[1].PType.

RPC VERSION
PARAMETER
(Optional)

Pass minimum version of RPC to be run in
Param[2].Value, and the type (literal) in
Param[2].PType. It is checked against the
value in the VERSION field of the REMOTE
PROCEDURE file on the remote VistA M
Server.

PARAMETERS
TO THE REMOTE
RPC

Pass up to seven parameters for the remote
RPC in Param[3] through Param[9].

RETURN VALUE An array. The first node is equal to a string that
serves as a HANDLE. This HANDLE should be
stored by the application and used to check the
status and retrieve the data. In the case of an
error condition the first node of the array is
equal to a string with the syntax "-1^error text".

 NOTE: XWB REMOTE RPC is available only on a controlled
subscription basis.

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB REMOTE RPC Example

XWB REMOTE RPC Example

The following is example of the XWB REMOTE RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB REMOTE RPC';
brkrRPCBroker1.Param[0].Ptype:= Literal;
brkrRPCBroker1.Param[0].Value := 'Station Number';
brkrRPCBroker1.Param[1].Ptype:= Literal;
brkrRPCBroker1.Param[1].Value := 'MY RPC';
brkrRPCBroker1.Param[2].Ptype:= Literal;
brkrRPCBroker1.Param[2].Value := '1';
brkrRPCBroker1.Param[3].Ptype:= Reference;
brkrRPCBroker1.Param[3].Value := 'MY RPC PARAMETER';
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
.; code to store HANDLE returned in
brkrRPCBroker1.Results[]

The application needs to use XWB REMOTE STATUS CHECK,
XWB REMOTE GETDATA, and XWB REMOTE CLEAR to complete
the transaction.

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB REMOTE STATUS CHECK

XWB REMOTE STATUS CHECK

Example

Use this RPC to check for results of XWB REMOTE RPC.
Periodically call this RPC and pass the HANDLE returned by XWB
REMOTE RPC.

Output Description

RETURN
VALUE

The return value is always an array. The first node
of the array is equal to one of the following values:

"-1^Bad Handle—An invalid handle has been
passed.

"0^New"—The request has been sent via
VistA HL7.

"0^Running"—VistA HL7 indicates that the
message is being processed.

"1^Done"—RPC has completed and the data
has been returned to the local VistA M
Server. The data is not returned by this RPC.

Use XWB REMOTE GETDATA to retrieve the
data.

The second node of the array is the status from the VistA HL7
package.

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB REMOTE STATUS CHECK Example

XWB REMOTE STATUS CHECK
Example

The following is example of the XWB REMOTE STATUS CHECK
RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB REMOTE STATUS
CHECK';
brkrRPCBroker1.Param[0].Value :='MYHANDLE';
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
.; code to handle results of check

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB REMOTE GETDATA

XWB REMOTE GETDATA

Example

Use this RPC to retrieve the results of XWB REMOTE RPC. Before
calling this RPC, use XWB REMOTE STATUS CHECK to ensure that
the results have been returned to the local VistA M Server. When the
results have arrived, call this RPC and pass the HANDLE returned by
XWB REMOTE RPC.

After the application is finished with the data on the VistA M Server, it
should use XWB REMOTE CLEAR to clear the ^XTMP global.

Output Description

RETURN
VALUE

An array containing the data. In the case of an
error condition the first node of the array is equal
to a string with the syntax "-1^error text".

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB REMOTE GETDATA Example

XWB REMOTE GETDATA
Example

The following is example of the XWB REMOTE GETDATA RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB REMOTE GETDATA';
brkrRPCBroker1.Param[0].Value :='MYHANDLE';
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
.; code to handle data

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB REMOTE CLEAR

XWB REMOTE CLEAR

Example

This RPC is used to clear the data created by a remote RPC under
the HANDLE in the ^XTMP. Pass the HANDLE returned by XWB
REMOTE RPC.

Output Description

RETURN
VALUE An array. The first node in the array is equal to 1.

Home > Other RPC Broker APIs > Running RPCs on a Remote
Server > XWB REMOTE CLEAR Example

XWB REMOTE CLEAR Example

The following is example of the XWB REMOTE CLEAR RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB REMOTE CLEAR';
brkrRPCBroker1.Param[0].Value :='MYHANDLE';
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;

Home > Other RPC Broker APIs > Deferred RPCs > Overview:
Deferred RPCs

Overview: Deferred RPCs

Remote Procedure Calls can now be run in the background with
XWB DEFERRED RPC.

Using Deferred RPCs

RPC Description

XWB
DEFERRED
RPC

Use this RPC to pass the name of the RPC to be run
in deferred mode and any parameters associated with
the deferred RPC. In response to this RPC the VistA
M Server returns a HANDLE to the user application.
At this point other Broker calls can commence while
the job runs in the background.

XWB
DEFERRED
STATUS

This RPC allows the application to check the local
VistA M Server for the presence of results from the
deferred RPC. This RPC passes the HANDLE to the
local server and receives back the status of the
remote RPC.

XWB
DEFERRED
GETDATA

This RPC is the vehicle for retrieving the results from
the remote RPC after the status check indicates that
the data has returned to the local VistA M Server. The
RPC passes the HANDLE and receives back an array
with whatever data has been returned by the deferred
RPC.

XWB
DEFERRED
CLEAR

This RPC must be used to clear the data under the
HANDLE in the ^XTMP Global.

XWB
DEFERRED
CLEARALL

Applications using XWB DEFERRED RPC should
use XWB DEFERRED CLEARALL on application
close to clear all known data associated with the job
on the VistA M Server.

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED RPC

XWB DEFERRED RPC

Example

Use this RPC to request that an RPC be run in deferred mode. The
return value is a HANDLE that is used to check status and retrieve
data. The following RPCs must be used to complete the transaction:

XWB DEFERRED STATUS

XWB DEFERRED GETDATA

XWB DEFERRED CLEAR

Parameter/Output Description

RPC
PARAMETER

Pass the name of the RPC to be run in
Param[0].Value, and the type (literal) in
Param[0].PType.

RPC VERSION
PARAMETER
(Optional)

Pass minimum version of RPC to be run in
Param[1].Value, and the type (literal) in
Param[1].PType. It is checked against the
value in the VERSION field of the REMOTE
PROCEDURE file on the remote VistA M
Server.

PARAMETERS
TO THE REMOTE
RPC

Pass up to eight parameters for the remote
RPC in Param[2] through Param[9].

RETURN VALUE An array. The first node is equal to a string that
serves as a HANDLE. This HANDLE should be
stored by the application and used to check the
status and retrieve the data. In the case of an
error condition, the first node of the array is
equal to a string with the syntax "-1^error text".

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED RPC Example

XWB DEFERRED RPC Example

The following is example of the XWB DEFERRED RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB DEFERRED RPC';
brkrRPCBroker1.Param[0].Ptype:= Literal;
brkrRPCBroker1.Param[0].Value := 'MY RPC';
brkrRPCBroker1.Param[1].Ptype:= Literal;
brkrRPCBroker1.Param[1].Value := '1';
brkrRPCBroker1.Param[2].Ptype:= Reference;
brkrRPCBroker1.Param[2].Value := 'MY RPC PARAMETER';
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
.; code to store HANDLE returned in
brkrRPCBroker1.Results[0]

The application needs to use XWB DEFERRED STATUS, XWB
DEFERRED GETDATA, and XWB DEFERRED CLEAR to complete
the transaction.

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED STATUS

XWB DEFERRED STATUS

Example

Use this RPC to check for results of XWB DEFERRED RPC.
Periodically, call this RPC and pass the HANDLE returned by XWB
REMOTE RPC.

Output Description

RETURN
VALUE

The return value is always an array. The first node
of the array is equal to one of the following values:

"-1^Bad Handle"—An invalid handle has been
passed.

"0^New"—The request has been sent via
VistA HL7.

"0^Running"—VistA HL7 indicates that the
message is being processed.

"1^Done"—RPC has completed and the data
has been returned to the local VistA M
Server. The data s not returned by this RPC.

Use XWB REMOTE GETDATA to retrieve the
data.

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED STATUS Example

XWB DEFERRED STATUS
Example

The following is example of the XWB DEFERRED STATUS RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB DEFERRED STATUS';
brkrRPCBroker1.Param[0].Value :='MYHANDLE';
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
 .; code to handle results of check

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED GETDATA

XWB DEFERRED GETDATA

Example

Use this RPC to retrieve the results of XWB DEFERRED RPC.
Before calling this RPC, use XWB DEFERRED STATUS to ensure
that the job has finished. When the results are available, call this
RPC and pass the HANDLE returned by XWB DEFERRED RPC.

After the application is finished with the data on the VistA M Server, it
should use XWB DEFERRED CLEAR to clear the ^XTMP global.

Output Description

RETURN
VALUE

An array containing the data. In the case of an
error condition the first node of the array is equal
to a string with the syntax "-1^error text".

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED GETDATA Example

XWB DEFERRED GETDATA
Example

The following is example of the XWB DEFERRED GETDATA RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB DEFERRED GETDATA';
brkrRPCBroker1.Param[0].Value :='MYHANDLE';
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;
.; code to handle data

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED CLEAR

XWB DEFERRED CLEAR

Example

This RPC is used to clear the data created by a deferred RPC under
the HANDLE in the ^XTMP global. Pass the HANDLE returned by
XWB DEFERRED RPC.

Output Description

RETURN
VALUE

An array. The first node in the array is equal to 1.

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED CLEAR Example

XWB DEFERRED CLEAR
Example

The following is example of the XWB DEFERRED CLEAR RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB DEFERRED CLEAR';
brkrRPCBroker1.Param[0].Value :='MYHANDLE';
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED CLEARALL

XWB DEFERRED CLEARALL

Example

This RPC is used to CLEAR ALL the data known to a remote RPC or
deferred RPC job in the ^XTMP global. It makes use of the list in
^TMP("XWBHDL",$J,handle). Applications using XWB REMOTE
RPC or the XWB DEFERRED RPC should use this RPC on
application close to clear all known data associated with the job on
the VistA M Server.

Output Description

RETURN
VALUE

An array. The first node in the array is equal to 1.

Home > Other RPC Broker APIs > Deferred RPCs > XWB
DEFERRED CLEARALL Example

XWB DEFERRED CLEARALL
Example

The following is example of the XWB DEFERRED CLEARALL RPC:

brkrRPCBroker1.RemoteProcedure := 'XWB DEFERRED CLEAR';
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be
established!');
end;

Home > Debugging and Troubleshooting > Overview: Debugging
and Troubleshooting

Overview: Debugging and
Troubleshooting

The Broker Development Kit (BDK) provides facilities for debugging
and troubleshooting your VistA Graphical User Interface (GUI)
applications.

How to Debug Your Application
Identifying the Listener Process

Identifying the Handler Process

RPC Error Trapping

Testing Your RPCBroker Connection

Memory Leaks

Client Timeout and Buffer Clearing

Broker Errors

 REF: For commonly asked questions, see the RPC Broker
FAQs at the following Intranet website:
redacted

Home > Debugging and Troubleshooting > How to Debug the
Application

How to Debug the Application

Beside the normal debugging facilities provided by Delphi, you can
also invoke a debug mode so that you can step through your code
on the client side and your RPC code on the VistA M Server side
simultaneously.

To invoke a debug mode, do the following:

1. On the client side, set the DebugMode property on the
TRPCBroker component to True. When the TRPCBroker
component connects with this property set to True, you get a
dialogue window indicating your workstation IP address and the
port number.

2. At this point, switch over to the VistA M Server, and set any
break points in the routines being called in order to help isolate
the problem. Then issue the M debug command (e.g., ZDEBUG
in DSM).

3. Start the following VistA M Server process:

>D EN^XWBTCP

You are prompted for the workstation IP address and the port
number. After entering the information, switch over to the client
application and click OK.

4. You can now step through the code on your client, and
simultaneously step through the code on the VistA M Server
side for any RPCs that your client calls.

Home > Debugging and Troubleshooting > RPC Error Trapping

RPC Error Trapping

M errors on the VistA M Server that occur during RPC execution are
trapped by the use of M and Kernel error handling. In addition, the M
error message is sent back to the Delphi client. Delphi raises an
exception EBrokerError and a popup dialogue box displaying the
error. At this point RPC execution terminates and the channel is
closed.

In some instances, an application's RPC could get a memory
allocation error on the VistA M Server (in DSM an "allocation
failure"). Kernel does not trap these errors. However, these errors
are trapped in the operating system's error trap. For example, if an
RPC receives or generates an abundance of data in local memory,
the symbol table could be depleted resulting in a memory allocation
error. To diagnose this problem, users should check the operating
system's error trap.

Home > Debugging and Troubleshooting > Broker Error Messages

Broker Error Messages

The following table lists the errors/messages that are Broker-specific
and are not Winsock related:

Error/Message Name Number Description

Insufficient Heap XWB_NO_HEAP 20001 This is a general
error condition
indicating
insufficient
memory. It can
occur when an
application
allocates
memory for a
variable. This
error occurs for
some of the
following
reasons:

Too many
open
applications.

Low
physical
memory.

Small virtual
memory
swap file (if
dynamic,
maybe low
disk space).

User
selecting
too many
records.

Resolution:
Common
solutions to this
error include the
following:

Close some
or all other
applications.

Install more
memory.

Increase the
swap file
size or, if
dynamic,
leave more
free space
on disk.

Try working
with smaller

data sets.

Reboot the
workstation.

M Error - Use
^XTER

XWB_M_REJECT 20002 The VistA M
Server side of
the application
errored out. The
Kernel error trap
has recorded the
error.

Resolution:
Examine the
Kernel error trap
for more
information and
specific
corrective
actions.

Signon was not
completed

XWB_BadSignOn 20004 This error
indicates the
user did not
successfully
signon.

Resolution:
Either the
Access and
Verify codes
were incorrect or
the user clicked
Cancel on the

VistA Sign-on
window.

BrokerConnections
list could not be
created

&XWB_BldConnectList 20005 This error is a
specific
symptom of a
low memory
condition.

Resolution: For
a detailed
explanation and
corrective
measures, see
the "Insufficient
Heap" error
message.

RpcVersion cannot
be empty

XWB_NullRpcVer 20006 This error occurs
when an RPC
does not have
an associated
version number.
Each RPC must
have a version
number.

Resolution:
Contact the
developers
responsible for
the application
software to take
corrective action.

Remote procedure XWB_RpcNotReg 20201 This error

not registered to
application

indicates the
application
attempted to
execute an RPC
that was not
entered into the
RPC Multiple
field in the
REMOTE
PROCEDURE
file (#8994) for
this application.

Resolution: The
developers
responsible for
the application
should be
contacted.

As a "last resort"
corrective
measure, you
can try to re-
index the cross-
reference on the
RPC field (#.01)
in the REMOTE
PROCEDURE
file (#8994) with
the RPC field
(#320) of the
OPTION file
(#19). Ideally,
this should only
be attempted
during off or low
system usage.

 REF: For common Winsock error messages, see the RPC Broker
"FAQ: Common Winsock Error/Status Messages" at the following RPC
Broker VA Intranet website:
redacted

http://vista.med.va.gov/broker/archive/docs/winsock.asp

Home > Debugging and Troubleshooting > EBrokerError

EBrokerError

Unit

TRPCB

Description

The EBrokerError is an exception raised by the TRPCBroker
component. This exception is raised when an error is encountered
when communicating with the VistA M Server. You should use a
try...except block around all server calls to handle any EbrokerError
exceptions that may occur.

For example:

try
 brkrRPCBroker1.Connected:= True;
except
 on EBrokerError do
 begin
 ShowMessage('Connection to server could not be
established!');
 Application.Terminate;
 end;
end;

 REF: For descriptions/resolutions to specific error messages
that can be displayed by EBrokerError, see the "Broker Error
Messages" topic.

Home > Debugging and Troubleshooting > Testing the RPC Broker
Connection

Testing the RPC Broker
Connection

To test the RPC Broker connection from your workstation to the
VistA M Server, use the RPC Broker Diagnostic Program (i.e.,
RPCTEST.EXE, located in the ..\Broker directory that was installed
with the client workstation software).

 REF: For a complete description of the RPC Broker Diagnostic
program, see Chapter 4, "Troubleshooting," in the RPC Broker
Systems Management Guide.

 REF: For a demonstration/test using the Broker to connect to a
VistA M Server, run the RPC Broker Example (i.e.,
 BrokerExample.EXE) located in the ..\BDK32\Samples\BrokerEx
directory.

Home > Debugging and Troubleshooting > Identifying the Listener
Process on the Server

Identifying the Listener Process
on the Server

On DSM systems, where the Broker Listener is running, the Listener
process name is RPCB_Port:NNNN, where NNNN is the port
number being listened to. This should help quickly locate Listener
processes when troubleshooting any connection problems.

Example

RPCB_Port:9999

Home > Debugging and Troubleshooting > Identifying the Handler
Process on the Server

Identifying the Handler Process
on the Server

On DSM systems the name of a Handler process is
ipXXX.XXX:NNNN, where XXX.XXX are the last two octets of the
client IP address and NNNN is the port number.

Example:

ip1.999:9999

Home > Debugging and Troubleshooting > Client Timeout and Buffer
Clearing

Client Timeout and Buffer
Clearing

If a remote procedure call (RPC) fails to successfully complete due
to a timeout on the client, the buffer on the VistA M Server contains
data from the uncompleted call. Without special handling, this buffer
on the server is returned whenever the next RPC is executed.

The solution to this problem is:

1. The RPCTimeLimit property on the TRPCBroker component on
the client helps avoid the problem in the first place.

2. In the event of a cancellation of a Network I/O operation, the
Broker state on the client changes from NO FLUSH to FLUSH.
When this state change occurs, the next RPC executed
undergoes a READ operation prior to execution where any
leftover incoming buffer is discarded. At the end of this
operation, the Broker state on the client returns to NO FLUSH
and the RPC executes normally. While the FLUSH state exists,
users can experience a delay while the corrupted RPC data is
discarded. The delay is proportional to the amount of data in the
buffer.

Home > Debugging and Troubleshooting > Memory Leaks

Memory Leaks

A good indication of a memory leak is when a running program is
steadily decreasing the free pool of memory. As it runs or every time
the program is started and stopped, free memory is steadily
decreased.

Specifically, a program requests some bytes of memory from the
Microsoft® Windows operating system (OS). When the OS provides
it, it marks those bytes as taken. The free pool of memory (i.e.,
unmarked bytes) is decreased. When the program is finished with
the memory, it should return the memory back to the OS by calling
the FREE or DISPOSE functions. This allows the OS to clear the
"taken" status of that memory; thereby, replenishing its free pool.
When a developer forgets to free the memory after use or the
program fails before it has a chance to execute the code that frees
the memory, the memory is not reclaimed.

At all times, the program should keep track of which memory it is
using. It does this by storing "Handles" (i.e., memory addresses of
the beginning byte of each memory block). Later, when freeing
memory, the Handle is used to indicate which memory address to
free. If the variable that holds such a Handle is overwritten, there is
no way to determine the Handle.

Nine out of ten times, memory leakage can be traced back to the
application code that requests memory and then forgets to return it,

or cannot clean up after a crash.

As common with other professional-level languages (e.g., C/C++),
Delphi has constructs that applications can use to:

1. Request memory.

2. Type cast it.

3. Return it.

This requires developers to use their best judgement on how to best
work with the system memory.

Avoiding memory leaks (and the often-subtle coding errors that lead
to them) is a challenge for Delphi developers, especially for those
whose main experience is working with M.

The insidious effect of these leaks (e.g., gobbling up 1K of memory
each time that a certain event occurs) makes them difficult to detect
with normal program testing. "Normal testing" means exercising all
the possible paths through the code once, a difficult enough process
in a Microsoft® Windows environment. Often, these leaks result in a
symptom only under peculiar conditions (e.g., several other
applications are running, reducing system resources), or only after
extended use of the application (e.g., do you notice that Microsoft®
Windows problems crop up in the afternoon, even though you were
doing the same thing that morning?).

The most common symptom described is the following:

"The computer was working fine until the user installed the XYZ
VistA software application on their PC. Now, it freezes up (gives
an error message, says it is out of memory, etc.) all the time,
even when the user is not using the XYZ package. No, the user
cannot duplicate it, it just happens!"

One of the reasons that there is an extensive market for automated
testing tools for Microsoft® Windows and client/server applications is
that thorough testing is very difficult to do manually.

Fortunately, there are diagnostic products available for detecting
code that cause memory leaks. It help developers and code
reviewers to find these leaks. Its use by people just starting out in
Delphi development helps them identify the situations that cause
memory leaks. This can serve as a good learning experience for new
Delphi developers.

No application is immune from memory leaks, careful analysis of
previous Broker code revealed some places where, under certain
conditions, memory was not being released after it was used (i.e.,
memory leaks). These areas have been identified and corrected with
RPC Broker 1.1.

Home > Debugging and Troubleshooting > ZDEBUG

ZDEBUG

A command used to enable or disable debug mode in Digital
Standard M (DSM):

Turn debugging on:
>ZDEBUG ON

Turn debugging off"
>ZDEBUG OFF

Home > Tutorial > Introduction

Tutorial: Introduction

Contents

The major functions of a TRPCBroker component in a Delphi-based
application are to:

Connect to an RPC Broker VistA M Server system from a client.

Execute remote procedure calls (RPCs) on that system.

Return data results from RPC to the client.

This tutorial guides users through using a TRPCBroker component
to perform each of these tasks by having you create a Delphi-based
application, step-by-step. This application retrieves a list of terminal
types from the VistA M Server, and displays information about each
terminal type.

After you have completed this tutorial, you should be able to:

Include a TRPCBroker component in a Delphi-based
application.

Retrieve the end-user client workstation's designated VistA M
Server and port to connect.

Establish a connection through the RPC Broker component to
an RPC Broker VistA M Server.

Create M routines that return data in the formats necessary to
be called from RPCs.

Create RPCs.

Call RPCs from a Delphi-based application to retrieve data from
VistA M database.

Pass parameters from the Delphi-based application to RPCs.

Tutorial Contents
Advanced Preparation

Step 1: RPC Broker Component

Step 2: Get Server and Port

Step 3: Establish Broker Connection

Step 4: Routine to List Terminal Types

Step 5: RPC to List Terminal Types

Step 6: Call ZxxxTT LIST RPC

Step 7: Associating IENs

Step 8: Routines to Retrieve Terminal Types

Step 9: RPC to Retrieve Terminal Types

Step 10: Call ZxxxTT RETRIEVE RPC

Step 11: Register RPCs

Final: Using VA FileMan Delphi Components (FMDCs)

Tutorial Source Code (Sample)

Home > Tutorial > Advanced Preparation

Tutorial: Advanced Preparation

Namespacing of Routines and RPCs

Each tutorial user should choose a unique namespace beginning
with Z, concatenated with two or three other letters, for example
ZYXU. Use this namespace as the beginning of the names for all
routines and RPCs created during this tutorial. Using the unique
namespace protects the system you are using from having existing
routines and RPCs overwritten. This namespace is referred to as
Zxxx during the tutorial.

Tutorial Prerequisites

To use this tutorial:

User should already have M programming skills, and some
familiarity with Delphi and Object Pascal.

User must have Delphi and the Broker Development Kit (BDK)
installed on the workstation.

The client workstation must have network access to an M
account that is running a RPC Broker server process.

Users must have programmer/developer access in this M
account, and it should be a test account (not production). Also,
users need the XUPROGMODE security key assigned to their
user account.

Home > Tutorial > 1-RPC Broker Component

Tutorial: Step 1—RPC Broker
Component

The first step of this tutorial is to create a Delphi-based application
that includes a TRPCBroker component.

To create a Delphi-based application that includes a TRPCBroker
component, do the following:

1. In Delphi, create a new application. Delphi creates a blank form,
named Form1.

2. Set Form1's Caption property to Terminal Type Display.

3. From the Kernel component palette tab, add a TRPCBroker
component to your form. The instance of the component is
automatically named RPCBroker1. It should be renamed to
brkrRPCBroker1.

 NOTE: In general the name of the component can be any
meaningful name that begins with "brkr" to indicate a
TRPCBroker component.

4. Leave the default values for Server and ListenerPort as is (they
are retrieved from your workstation's Registry). In the next
section of the tutorial, you will add code to retrieve these values

at run-time from the workstation's Registry.

5. Set the ClearParameters and ClearResults properties to True if
they are not set to True already. This ensures that each time a
call to an RPC is made, the Results property is cleared
beforehand, and the Param property is cleared afterwards.

6. Your form should look like the following:

The next tasks are to use the TRPCBroker component to
retrieve the client workstation's RPC Broker server and port
information (Step 2), and then to establish a connection through
the TRPCBroker component to the VistA M Server (Step 3).

Home > Tutorial > 2-Get Server and Port

Tutorial: Step 2—Get
Server/Port

The TRPCBroker component added to your form is hard-coded to
access the Broker server and listener port that it picks up from the
(developer) workstation (by default, BROKERSERVER and 9200).
Naturally, you do not want this to be the only server and port that
your application can connect. To retrieve the end-user workstation's
designated Broker server and port to connect, as stored in their
Registry, you can use the GetServerInfo function.

To retrieve the end-user workstation's designated server and port, do
the following:

1. Include the RPCConf1 unit in the Pascal file's uses clause. This
is the unit of which GetServerInfo is a part.

2. Double-click on a blank region of the form. This creates an
event handler procedure, TForm1.FormCreate, in the Pascal
source code.

3. Add code to the FormCreate event handler that retrieves the
correct server and port to connect, using the GetServerInfo
function. If mrCancel is returned, the code should quit.
Otherwise, the code should then set brkrRPCBroker1's Server
and ListenerPort properties to the returned values.

The code should look like the following:

procedure TForm1.FormCreate(Sender: TObject);
var
 ServerStr: String;
 PortStr: String;
begin
 // Get the correct port and server from the
Registry.
 if GetServerInfo(ServerStr,PortStr)<> mrCancel then
 begin
 brkrRPCBroker1.Server:=ServerStr;
 brkrRPCBroker1.ListenerPort:=StrToInt(PortStr);
 {connectOK}
 end
 else
 Application.Terminate;
end;

4. Now that you have code to retrieve the appropriate RPC Broker
server and listener port, the next step of the tutorial (Step 3) is
for the application to use the TRPCBroker component to
establish a connection to the VistA M Server.

Home > Tutorial > 3-Establish Broker Connection

Tutorial: Step 3—Establish
Broker Connection

Now that the application can determine the appropriate RPC Broker
server and port to connect (Step 2), add code to establish a
connection to the designated RPC Broker server from the
application. The act of establishing a connection leads the user
through signon. If signon succeeds, a connection is established.

To establish a connection from the application to a RPC Broker
server, do the following:

1. Add code to Form1's OnCreate event handler. The code should:

a. Set brkrRPCBroker1's Connected property to True (inside
of an exception handler try...except block). This causes an
attempt to connect to the RPC Broker server.

b. Check if an EBrokerError exception is raised. If this
happens, connection failed, and the code should inform the
user of this and terminate the application.

The OnCreate event handler should now look like:

procedure TForm1.FormCreate(Sender: TObject);
var
 ServerStr: String;
 PortStr: String;
begin

 // Get the correct port and server from the
Registry.
 if GetServerInfo(ServerStr,PortStr)<> mrCancel
then
 {connectOK begin}
 begin
 brkrRPCBroker1.Server:=ServerStr;
 brkrRPCBroker1.ListenerPort:=StrToInt(PortStr
);
 // Establish a connection to the RPC Broker
server.
 try
 brkrRPCBroker1.Connected:=True;
 except
 On EBrokerError do
 {error begin}
 begin
 ShowMessage('Connection to server could
not be established!');
 Application.Terminate;
 {error end}
 end;
 {try end}
 end;
 {connectOK end}
 end
 else
 Application.Terminate;
end;

 NOTE: Every call that invokes an RPC Broker server
connection should be done in an "exception handler"
try...except block, so that EBrokerError exceptions can be
trapped.

2. Save, compile and run the application. It should connect to the
VistA M Server returned by the GetServerInfo function. You may
be prompted to sign on with Access and Verify codes (unless
Auto Signon is enabled, and you are already signed on). If you
can connect successfully, the application runs (at this point, it is
just a blank form). Otherwise, troubleshoot the RPC Broker

connection until the application connects.

3. If the server system defined in the Registry is not the
development system (the one on which RPCs are created for
this application), update the Registry using the ServerList.EXE
program so that the application connects to the proper VistA M
Server.

4. Now that the application can establish a connection to the end-
user's server system, you can retrieve data from the VistA M
Server.

The next steps of the tutorial create a custom RPC that retrieves
a list of all of the terminal types on the VistA M Server and calls
that RPC from the application.

Home > Tutorial > 4-Routine to List Terminal Types

Tutorial: Step 4—Routine to List
Terminal Types

Now that the application uses an RPC Broker component to connect
correctly to an RPC Broker server (Step 3), you are ready to create
custom RPCs that the application can call. For the tutorial, you will
create an RPC that retrieves the list of all terminal types from the
RPC Broker server.

The first step in creating an RPC is to create the routine that the
RPC executes. You must create its input and output in a defined
format that is compatible with being executed as an RPC.

To create the routine that the RPC executes, do the following:

1. Choose the data format that the RPC should return. The type of
data needed to return to the client application determines the
format of the routine that the RPC calls. There are five return
value types for RPCs:

SINGLE VALUE

ARRAY

WORD PROCESSING

GLOBAL ARRAY

GLOBAL INSTANCE

Since the type of data the tutorial application would like returned
is a list of terminal types, and that list could be quite long, use a
return value type GLOBAL ARRAY for the RPC. For the routine
called by the RPC, this means that:

The routine should return a list of terminal types in a global.
Each terminal type should be on an individual data node,
subscripted numerically.

The return value of the routine (always returned in the
routine's first parameter) should be the global reference of
the data global, in closed root form. The data nodes should
be one level descendant from the global reference.

2. Create a routine, in the M account that the TRPCBroker
component connects to, that outputs a list of terminal types in
the format determined above. The format for each data node
that is returned for a terminal type could be anything; for the
sake of this application, set each data node to "ien^.01 field" for
the terminal type in question. Store each node in
^TMP($J,"ZxxxTT",#).

ZxxxTT ;ISC-SF/KC TUTORIAL RTN, BRK 1.1; 7/22/97
 ;;1.0;;
TERMLIST(GLOBREF) ; retrieve list of term types
 ; return list in ^TMP($J,"ZxxxTT")
 ; format of returned results: ien^.01 field
 N % ;
 scratch variable
 K ^TMP($J,"ZxxxTT") ; clear data return
area

 D LIST^DIC(3.2) ; retrieve
list of termtype entries
 ; now set termtype entries into data global
 I '$D(DIERR) D
 .S %=0 F S %=$O(^TMP("DILIST",$J,2,%)) Q:%="" D
 ..S
^TMP($J,"ZxxxTT",%)=$G(^TMP("DILIST",$J,2,%))_"^"_$G(^T
MP("DILIST",$J,1,%))
 K ^TMP("DILIST",$J) ;
clean up
 S GLOBREF=$NA(^TMP($J,"ZxxxTT")) ; set return value
 Q

3. Test the routine. Call it like the Broker would:

> D TERMLIST^ZxxxTT(.RESULT)

a. Confirm that the return value is the correct global reference:

> W RESULT
^TMP(566363396,"ZxxxTT")

b. Confirm that the data set into the global is in the following
format:

^TMP(566347920,"ZxxxTT",1) = 1^C-3101
^TMP(566347920,"ZxxxTT",2) = 2^C-ADDS
^TMP(566347920,"ZxxxTT",3) = 3^C-ADM3
^TMP(566347920,"ZxxxTT",4) = 38^C-DATAMEDIA
^TMP(566347920,"ZxxxTT",5) = 106^C-DATATREE
^TMP(566347920,"ZxxxTT",6) = 4^C-DEC
^TMP(566347920,"ZxxxTT",7) = 5^C-DEC132
^TMP(566347920,"ZxxxTT",8) = 93^C-FALCO
^TMP(566347920,"ZxxxTT",9) = 6^C-H1500
^TMP(566347920,"ZxxxTT",10) = 103^C-HINQLINK
^TMP(566347920,"ZxxxTT",11) = 132^C-HINQLINK
^TMP(566347920,"ZxxxTT",12) = 63^C-HP110
^TMP(566347920,"ZxxxTT",13) = 34^C-HP2621

4. Once you have tested the routine, and confirmed that it returns
data correctly, the next step (Step 5) is to create the RPC that
calls this routine.

Home > Tutorial > 5-RPC to List Terminal Types

Tutorial: Step 5—RPC to List
Terminal Types

Now that you have created an RPC-compatible routine to list
terminal types (Step 4), you can go ahead and create the RPC itself
(the entry in the REMOTE PROCEDURE file) that calls the routine.

To create an RPC that uses the TERMLIST^ZxxxTT routine, do the
following:

1. Using VA FileMan, create a new RPC entry in the REMOTE
PROCEDURE file. Set up the RPC as follows:

 NAME: ZxxxTT LIST
 TAG: TERMLIST
 ROUTINE: ZxxxTT
RETURN VALUE TYPE: GLOBAL ARRAY
 WORD WRAP ON: TRUE
 DESCRIPTION: Used in RPC Broker developer
tutorial.

The RPC's RETURN VALUE TYPE is set to GLOBAL ARRAY.
This means that the RPC expects a return value that is a global
reference (with data stored at that global reference).

Also, the RPC's WORD WRAP ON is set to TRUE. This means
each data node from the VistA M Server is returned as a single
node in the Results property of the TRPCBroker component in
Delphi. Otherwise, the data would be returned concatenated into
a single node in the Results property.

2. The next step of the tutorial (Step 6) is to call this RPC from the
tutorial application, through its TRPCBroker component.

Home > Tutorial > 6-Call ZxxxTT LIST RPC

Tutorial: Step 6—Call ZxxxTT
LIST RPC

Once you have created and tested the ZxxxTT LIST RPC on the
VistA M Server, use the Delphi-based application's TRPCBroker
component to call that RPC.

To call the ZxxxTT LIST RPC from the Delphi-based application to
populate a list box, do the following:

1. Place a TListBox component on the form. It should be
automatically named ListBox1.

Size it so that it uses the full width of the form, and half of the
form's height.

2. Place a button beneath ListBox1:

Set its caption to "Retrieve Terminal Types".

Size the button so that it is larger than its caption.

3. Double-click on the button. This creates an event handler
procedure, TForm1.Button1Click, in the Pascal source code.

4. In the TForm1.Button1Click event handler, add code to call the
ZxxxTT LIST RPC and populate the list box with the retrieved
list of terminal type entries. This code should:

a. Set RCPBroker1's RemoteProcedure property to ZxxxTT
LIST.

b. Call brkrRPCBroker1's Call method (in a try...except
exception handler block) to invoke that RPC.

c. Retrieve results from brkrRPCBroker1's Results property,
setting them one-by-one into the list box's Items property.

This code should look as follows:

Procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer;
begin
 brkrRPCBroker1.RemoteProcedure:='ZxxxTT LIST';
 try
 {call begin}
 begin
 brkrRPCBroker1.Call;
 ListBox1.Clear;
 for i:=0 to (brkrRPCBroker1.Results.Count-
1) do
 ListBox1.Items.Add(piece(brkrRPCBroker1
.Results[i],'^',2));
 {call end}
 end;
 except
 On EBrokerError do
 ShowMessage('A problem was encountered
communicating with the server.');
 {try end}
 end;
end;

5. Include the mfunstr unit in the Uses clause of the project's
Pascal source file. This enables the application to use the piece
function included in mfunstr.

6. The user account must have XUPROGMODE security key
assigned. This allows the application to execute any RPC,
without the RPC being registered. Later in the tutorial you will
register your RPCs.

7. Run the application, and click Retrieve Terminal Types. It
should retrieve and display terminal type entries, and appear as
follows:

8. Now that you can retrieve a list of terminal type entries, the next
logical task is to retrieve a particular entry when a user selects
that entry in the list box.

Home > Tutorial > 7-Associating IENs

Tutorial: Step 7—Associating
IENs

When a user selects a terminal type entry in the list box, a typical
action is to retrieve the corresponding record and display its fields.
The key to retrieving any VA FileMan record is knowing the IEN of
the record. Thus, when a user selects an entry in the list box, you
need to know the IEN of the corresponding VA FileMan entry.
However, the list box items themselves only contain the name of
each entry, not the IEN.

The subscripting of items in the list box still matches the original
subscripting of items returned in brkrRPCBroker1's Results property,
as performed by the following code in Button1Click event handler:

for i:=0 to (brkrRPCBroker1.Results.Count-1) do
 ListBox1.Items.Add(piece(brkrRPCBroker1.Results[i],'^',2
));

If no further calls to brkrRPCBroker1 were made, you could simply
refer back to brkrRPCBroker1's Results[x] item to obtain the
matching IEN of a list boxes' Items[x] item. But, since
brkrRPCBroker1 is used again, the Results property is cleared. So,
the results must be saved off in another location, if you want to be
able to refer to them after other Broker calls are made.

To save off the Results to another location, do the following:

1. Create a variable named TermTypeList, of type TStrings. This
is where brkrRPCBroker1.Results is saved. Create the variable
in the section of code where TForm1 is defined as a class:

type
 TForm1 = class(TForm)
 brkrRPCBroker1: TRPCBroker;
 ListBox1: TListBox;
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 {Private declarations}
 public
 {Public declarations}
// Added declaration of TermTypeList.
 TermTypeList: TStringList;
end;

2. In Form1's OnCreate event handler, call the Create method to
initialize the TermTypeList. Do this in the first line of code of the
event handler:

TermTypeList:=TStringList.Create;

3. Create an event handler for Form1's OnDestroy event (select
Form1, go to the Events tab of the Object Inspector, and
double-click on the right-hand column for the OnDestroy event).
In that event handler, add one line of code to call the Free
method for TermTypeList. This frees the memory used by the
list:

procedure TForm1.FormDestroy(Sender: TObject);
begin
 TermTypeList.Free;
end;

4. In Button1's OnClick event handler, add a line of code to
populate TermTypeList with the list of terminal types returned in
brkrRPCBroker1's Results property. This code uses the Add
method of TStrings sequentially so that the subscripting of

TermTypeList matches the subscripting of Results. The code for
that event handler should then look like:

procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer;
begin
 brkrRPCBroker1.RemoteProcedure:='Zxxx LIST';
 try
 {call begin}
 begin
 brkrRPCBroker1.Call;
 for i:=0 (brkrRPCBroker1.Results.Count-1) do
begin {copy begin}
 ListBox1.Items.Add(piece(brkrRPCBroker1.Res
ults[i],'^',2));
 // Added line.
 TermTypeList.Add(brkrRPCBroker1.Results[i])
;
 {copy end}
 end;
 {call end}
 end;
 except
 On EBrokerError do
 ShowMessage('A problem was encountered
communicating with the server.');
 {try end}
 end;
end;

5. Determine (and display) the IEN of the corresponding terminal
type when a user selects an item in the list box:

a. Create an OnClick event handler for ListBox1 by double-
clicking on the list box.

b. Add code to the new event handler that checks if an item is
selected. If an item is selected in the list box, display the
first piece of the corresponding item saved off in the
TermTypeList array (the index subscripts of TermTypeList

and of the list box match each other). This is the IEN of the
corresponding VA FileMan entry.

procedure TForm1.ListBox1Click(Sender: TObject);
var
 ien: String;
begin
 if (ListBox1.ItemIndex <> -1) then
 {displayitem begin}
 begin
 ien:=piece(TermTypeList[ListBox1.ItemIndex],'
^',1);
 ShowMessage(ien);
 {displayitem end}
 end;
end;

6. Compile and run the application. When you click on an item in
the list box, the IEN corresponding to that item should be
displayed in a popup message window.

7. Now that you can determine the IEN of any entry the user
selects in the list box, you can retrieve and display the
corresponding VA FileMan record for any selected list box entry.

Home > Tutorial > 8-Routine to Retrieve Terminal Types

Tutorial: Step 8—Routine to
Retrieve Terminal Types

Now that you have associated an IEN for each record displayed in
the list box (Step 7), you can use that IEN to display fields from any
terminal type entry in the list box that a user selects. To retrieve the
fields for any selected terminal type entry, create a second custom
RPC. This RPC needs to take an input parameter, the record IEN, to
know which record to retrieve.

To create an RPC routine to retrieve individual terminal type records,
do the following:

1. Choose the data format that the RPC should return. The type of
data needed to return to the client application determines the
format of the routine that the RPC calls. In this case, the RPC
should, given an IEN, return fields .01, 1, 2, 3, 4, 6, and 7
(Name, Right Margin, Form Feed, Page Length, Back Space,
Open Execute, and Close Execute).

Since this information is constrained and small, a return type of
ARRAY would be suitable for this RPC. The return format of the
array is arbitrary; for the sake of this application, the routine
should return fields .01, 1, 2, 3, and 4 in node 0; field 6 (a 245-
character field) in node 1; and field 7 (also a 245-character field)
in node 2. This array must be returned in the first parameter to
the routine.

2. The routine for this RPC also needs to be able to take an IEN as
an input parameter. Any additional input parameters, such as
one for the IEN, must follow the required input parameter in
which results are returned.

3. Add a second subroutine to the ZxxxTT routine for the second
RPC, similar to the following. This subroutine uses an IEN to
retrieve fields for a particular terminal type. It then sets three
result nodes, each containing a specified set of fields for the
record corresponding to the IEN parameter.

TERMENT(RESULT,IEN) ; retrieve a string of fields for a
termtype
 ; format of results (by field number):
 ; RESULT(0)=.01^1^2^3^4
 ; RESULT(1)=6
 ; RESULT(2)=7
 ;
 N I,ARRAY S IEN=IEN_",",RESULT(1)=""
 D GETS^DIQ(3.2,IEN,".01;1;2;3;4;6;7","","ARRAY")
 S RESULT(0)="" I '$D(DIERR) D
. F I=.01,1,2,3,4 D
 ..S RESULT(0)=RESULT(0)_ARRAY(3.2,IEN,I)_"^"
 .S RESULT(1)=ARRAY(3.2,IEN,6)
 .S RESULT(2)=ARRAY(3.2,IEN,7)
 Q

4. Test the routine. Call it like the Broker would:

>D TERMENT^ZxxxTT(.ARRAY,103)

Confirm that the return array contains the specified fields in the
following nodes:

ARRAY(0)=C-
HINQLINK^80^#,$C(27,91,50,74,27,91,72)^24^$C(8)^
ARRAY(1)=U $I:(0:255::255:512)
ARRAY(2)=U $I:(:::::512) C $I

5. Once you have tested the routine, and confirmed that it returns
data correctly, the next step (Step 9) is to create the RPC that

calls this routine.

Home > Tutorial > 9-RPC to Retrieve Terminal Types

Tutorial: Step 9—RPC to
Retrieve Terminal Types

Now that you have created an RPC-compatible routine to retrieve
fields from a terminal type record (Step 8), create the RPC itself.

To create an RPC that uses the TERMENT^ZxxxTT routine, do the
following:

1. Using VA FileMan, create a new RPC entry in the REMOTE
PROCEDURE file. Set up the RPC as follows:

 NAME: ZxxxTT RETRIEVE
 TAG: TERMENT
 ROUTINE: ZxxxTT
RETURN VALUE TYPE: ARRAY
 DESCRIPTION: Used in RPC Broker tutorial.
 INPUT PARAMETER: IEN PARAMETER TYPE: LITERAL

The RPC's RETURN VALUE TYPE is set to ARRAY. This
means that the RPC expects a return value that contains results
nodes, each subscripted only at the first subscript level.

The WORD WRAP ON setting does not affect RPCs whose
RETURN VALUE TYPE is ARRAY.

The additional input parameter needed to pass in a record IEN
is documented in the INPUT PARAMETER Multiple. Its
parameter type is LITERAL, which is appropriate when being

passed the numeric value of an IEN.

2. This RPC can now be called from a Delphi-based application,
through the TRPCBroker component.

Home > Tutorial > 10-Call ZxxxTT RETRIEVE RPC

Tutorial: Step 10—Call ZxxxTT
RETRIEVE RPC

When a user selects a terminal type entry in the list box, the OnClick
event is triggered. The ZxxxTT RETRIEVE RPC can be called from
that OnClick event, as a replacement for the code there that simply
displays the IEN of any selected record.

To use the ZxxxTT RETRIEVE RPC to display fields from a selected
terminal type, do the following:

1. Create labels and edit boxes for each of the fields the RPC
returns from the Terminal type file:

Terminal
Type
Field:

Add a TEdit
component

named:

Add a
Label

with the
Caption:

.01 Name Name

1 RightMargin Right
Margin:

2 FormFeed Form

Feed:

3 PageLength Page
Length:

4 BackSpace Back
Space:

6 OpenExecute Open
Execute:

7 CloseExecute Close
Execute:

2. Update ListBox1's OnClick event handler. Add code so that
when the user clicks on an entry in the list box, the application
calls the ZxxxTT RETRIEVE RPC to retrieve fields for the
corresponding terminal type, and displays those fields in the set
of TEdit controls on the form. This code should:

a. Set RCPBroker1's RemoteProcedure property to ZxxxTT
RETRIEVE.

b. Pass the IEN of the selected terminal type to the RPC,
using the TRPCBroker's runtime Param property. Pass the
IEN in the Value property (i.e.,
brkrRPCBroker1.Param[0].Value).

c. Pass the PType for the IEN parameter in the
brkrRPCBroker1.Param[0].PType. Possible types are literal,
reference, and list. In this case, to pass in an IEN, the
appropriate PType is literal.

d. Call brkrRPCBroker1's Call method (in a try...except
exception handler block) to invoke the ZxxxTT RETRIEVE
RPC.

e. Set the appropriate pieces from each of the three Results
nodes into each of the TEdit boxes corresponding to each
returned field.

The code for the OnClick event handler should look like the
following:

procedure TForm1.ListBox1Click(Sender: TObject);
var
 ien: String;
begin
 if (ListBox1.ItemIndex <> -1) then
 {displayitem begin}
 begin
 ien:=piece(TermTypeList[ListBox1.ItemIndex],'
^',1);
 brkrRPCBroker1.RemoteProcedure:='ZxxxTT
RETRIEVE';
 brkrRPCBroker1.Param[0].Value := ien;
 brkrRPCBroker1.Param[0].PType := literal;
 try
 {call code begin}
 begin
 brkrRPCBroker1.Call;
 Name.Text:=piece(brkrRPCBroker1.Results
[0],'^',1);
 RightMargin.Text:=piece(brkrRPCBroker1.
Results[0],'^',2);
 FormFeed.Text:=piece(brkrRPCBroker1.Res
ults[0],'^',3);
 PageLength.Text:=piece(brkrRPCBroker1.R
esults[0],'^',4);

 BackSpace.Text:=piece(brkrRPCBroker1.Re
sults[0],'^',5);
 OpenExecute.Text:=brkrRPCBroker1.Result
s[1];
 CloseExecute.Text:=brkrRPCBroker1.Resul
ts[2];
 {call code end}
 end;
 except
 On EBrokerError do
 ShowMessage('A problem was encountered
communicating with the server.');
 {try end}
 end;
 {displayitem end}
 end;
end;

3. Compile and run the application. When you click on an entry in
the list box now, the corresponding fields should be retrieved
and displayed in the set of edit boxes on your form.

Home > Tutorial > 11-Register RPCs

Tutorial: Step 11—Register
RPCs

Up until now, it has been assumed that the only user of the
application is you, and that you have programmer/developer access
and the XUPROGMODE security key in the account where the
RPCs are accessed.

Under any other circumstance, any RPCs that the application uses
must be registered for use by the application on the host system.
Registration authorizes the RPCs for use by the client based on user
privileges.

To register the RPCs used by the tutorial application, do the
following:

1. Create an option of type "B" (Broker). For example, create an
option called ZxxxTT TERMTYPE for the tutorial application.

2. In the "B"-type option's RPC multiple, make one entry for each
RPC the application calls. In the case of this tutorial, there
should be two entries:

ZxxxTT LIST

ZxxxTT RETRIEVE

3. Follow the steps in the "How to Register an RPC" topic to create
an application context, using the ZxxxTT TERMTYPE option.

Essentially, add a line of code that calls the CreateContext
function, and terminates the application if False is returned. The
code for Form1's OnCreate event should now look like:

procedure TForm1.FormCreate(Sender: TObject);
var
 ServerStr: String;
 PortStr: String;
begin
 TermTypeList:=TStringList.Create;
 // Get the correct port and server from Registry.
 if GetServerInfo(ServerStr,PortStr)<> mrCancel then
 {connectOK begin}
 begin
 brkrRPCBroker1.Server:=ServerStr;
 brkrRPCBroker1.ListenerPort:=StrToInt(PortStr);
 // Establish a connection to the RPC Broker
server.
 try
 brkrRPCBroker1.Connected:=True;
 // Check security.
 if not brkrRPCBroker1.CreateContext('ZxxxTT
TERMTYPE') then
 Application.Terminate;
 except
 On EBrokerError do
 {error begin}
 begin
 ShowMessage('Connection to server could not
be established!');
 Application.Terminate;
 {error end}
 end;
 {try end}
 end;
 {connectOK end}
 end
 else
 Application.Terminate;

end;

4. Compile and run the application. Try running it both with and
without the XUPROGMODE security key assigned to you.
Without the XUPROGMODE security key, you are not able to
run the application unless the ZxxxTT TERMTYPE option is
assigned to your menu tree.

Home > Tutorial > FileMan Delphi Components (FMDC)

Tutorial: FileMan Delphi
Components (FMDC)

Congratulations! You have created a sample application that
performs entry lookup, and retrieves fields from any record selected
by the end-user. You are now ready to create Delphi-based
applications using the RPC Broker.

If the application needs to perform database tasks with VA FileMan
on a VistA M Server, consider using the FileMan Delphi Components
(FMDC). These components automate the major tasks of working
with database records through Delphi. Among the functions they
provide are:

Automated entry retrieval into a set of controls.

Automated online help for database fields.

Automated validation of user data entry.

Automated filing of changed data.

IEN tracking in all controls.

Automated DBS error tracking on the Delphi client.

Generic lookup dialogue.

Record locking.

Record deletion.

If you need to do more than the most simple database tasks in your
Delphi-based applications, the FileMan Delphi Components (FMDC)
encapsulate most of the coding needed to retrieve, validate, and file
VA FileMan data.

 REF: For more information on the VA FileMan Delphi
Components (FMDC), see the FMDC VA Intranet website:
redacted

http://vista.med.va.gov/fmdc/index.asp

Home > Tutorial > Source Code

Tutorial Source Code
unit tut1;

interface

Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, Trpcb, RPCConf1, StdCtrls, MFunStr;

type
 TForm1 = class(TForm)
 brkrRPCBroker1: TRPCBroker;
 ListBox1: TListBox;
 Button1: TButton;
 Name: TEdit;
 RightMargin: TEdit;
 FormFeed: TEdit;
 OpenExecute: TEdit;
 CloseExecute: TEdit;
 PageLength: TEdit;
 BackSpace: TEdit;
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;
 Label4: TLabel;
 Label5: TLabel;
 Label6: TLabel;
 Label7: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure ListBox1Click(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 {Private declarations}
 public
 {Public declarations}
 // Added declaration of TermTypeList.
 TermTypeList: TStrings;
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
var
 ServerStr: String;
 PortStr: String;
begin
 TermTypeList:=TStringList.Create;
 // Get the correct port and server from the Registry.
 if GetServerInfo(ServerStr,PortStr)<> mrCancel then
 {connectOK begin}
 begin
 brkrRPCBroker1.Server:=ServerStr;
 brkrRPCBroker1.ListenerPort:=StrToInt(PortStr);
 // Establish a connection to the RPC Broker server.
 try
 brkrRPCBroker1.Connected:=True;
 if not brkrRPCBroker1.CreateContext('ZxxxTT
TERMTYPE') then
 Application.Terminate;
 except
 On EBrokerError do
 {error begin}
 begin
 ShowMessage('Connection to server could not be
established!');
 Application.Terminate;
 {error end}
 end;
 {try end}
 end;
 {connectOK end}
 end
 else
 Application.Terminate;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer
 brkrRPCBroker1.RemoteProcedure:='ZxxxTT LIST';
 try
 {call begin}
 begin
 brkrRPCBroker1.Call;
 for i:=0 to (brkrRPCBroker1.Results.Count-1) do begin
 {copy begin}

 ListBox1.Items.Add(piece(brkrRPCBroker1.Results[i],'
^',2));
 // Added line.
 TermTypeList.Add(brkrRPCBroker1.Results[i]);
 {copy end}
 end;
 {call end}
 end;
 except
 On EBrokerError do
 ShowMessage('A problem was encountered communicating
with the server.');
 {try end}
begin
 end;
end;

procedure TForm1.ListBox1Click(Sender: TObject);
var
 ien: String;
begin
 if (ListBox1.ItemIndex <> -1) then
 {displayitem begin}
 begin
 ien:=piece(TermTypeList[ListBox1.ItemIndex],'^',1);
 brkrRPCBroker1.RemoteProcedure:='ZxxxTT RETRIEVE';
 brkrRPCBroker1.Param[0].Value := ien;
 brkrRPCBroker1.Param[0].PType := literal;
 try
 {call code begin}
 begin
 brkrRPCBroker1.Call;
 Name.Text:=piece(brkrRPCBroker1.Results[0],'^',1)
;
 RightMargin.Text:=piece(brkrRPCBroker1.Results[0]
,'^',2);
 FormFeed.Text:=piece(brkrRPCBroker1.Results[0],'^
',3);
 PageLength.Text:=piece(brkrRPCBroker1.Results[0],
'^',4);
 BackSpace.Text:=piece(brkrRPCBroker1.Results[0],'
^',5);
 CloseExecute.Text:=brkrRPCBroker1.Results[2];
 {call code end}
 end;
 except
 On EBrokerError do
 ShowMessage('A problem was encountered communicating

with the server.');
 {try end}
 end;
 {displayitem end}
 end;
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 TermTypeList.Free;
end;

end.

Home > Tutorial > DNS

DNS

The Domain Name Service (DNS) is a distributed database that
maps names to their Internet Protocol (IP) addresses or IP
addresses to their names. A query to this database is used to
resolve names and IP addresses.

Home > Tutorial > HOSTS File

HOSTS File

The HOSTS file is an ASCII text file that contains a list of the servers
and their Internet Protocol (IP) addresses. It is recommended that
you put in a "DHCPSERVER" entry that points to the main server
you intend using with the Broker the majority of the time. In your
applications, you are able to specify any server you wish; however, if
the Server property = " (i.e., null), you get an error.

Home > Tutorial > IP Address

IP Address

The Internet Protocol (IP) address is the network interface address
for a client workstation, server, or device.

Home > Tutorial > JOB

$JOB

Contains your operating system job number on the VistA M Server:

On DSM for OpenVMS systems—This is the process
identification (PID) number of your process.

On DSM for DEC OSF/1 systems—The job number is the PID of
the child process created when you enter the DSM command.

Home > Tutorial > ORDER

$ORDER
$ORDER(variable name{,integer code})

Returns the subscript of the previous or next sibling in collating
sequence of a specified array node.

To obtain the first subscript of a level, specify a null subscript in the
argument.

Home > Tutorial > Silent Login

Silent Login

Example

The RPC Broker provides "Silent Login" capability. Silent Login is a
way to log in a user with known login information. Silent Login skips
the step of asking the user for login information. It provides
functionality associated with the ability to make logins to a VistA M
Server without the RPC Broker asking for Access and Verify code
information. It is similar to Auto Signon in some ways, but there are
important differences.

There are two types of Silent Login are provided with the RPC
Broker 1.1 BDK:

Access/Verify Code-based—Type of Silent Login that uses
Access and Verify codes provided by the application. This type
of Silent Login may be necessary for an application that runs as
a background task and repeatedly signs on for short periods.
Another case would be for applications that are interactive with
the user, but are running under conditions where they cannot
provide a standard dialogue window, such as that used by the
Broker to request Access and Verify codes. Examples might be
applications running on handheld devices or within a browser
window.

Token-based—Type of Silent Login that uses a token obtained
by one application that is passed along with other information as
a command line argument to a second application that it is

starting. The token is obtained from the VistA server and
remains valid for about twenty (20) seconds. When the newly
started application sends this token during login the server
identifies the same user and completes the login.

Due to the various conditions under which Silent Logins might be
used, it was also necessary to provide options to the applications on
error handling and processing. Applications that run as system
services crash if they attempt to show a dialogue box. Similarly,
applications running within Web browsers are not permitted to show
a dialogue box or to accept windows messages. Properties have
been provided to permit the application to handle errors in a number
of ways.

As a part of the Silent Login functionality, the TVistaUser Class
providing basic user information was added. This class is used as a
property by the TRPCBroker class and is filled with data following
completion of the login process. This property and its associated
data is available to all applications, whether or not they are using a
Silent Login.

 REF: For more information on handling divisions during Silent
Login, see "Handling Divisions During Silent Login."

Silent Login Compared to Auto
Signon

In Auto Signon, the Client Agent manages the login process on the
client. On a primary login (i.e., no existing connections), the user is
prompted for Access and Verify codes. On secondary logins, the
Client Agent handles the login with the information from the primary
login. Developers do not have access to the Auto Signon process.

 REF: For more information on Auto Signon, see the RPC Broker
Systems Management Guide.

Silent Login offers developers an opportunity to skip the login
process for the user if they have access to login information from
some other source. It is up to the developer to deliver the
appropriate login information to the application and enable the Silent
Login process.

Interaction between Silent Login and
Auto Signon

On primary login, Silent Login happens if it is enabled (the
KernelLogIn property is set to False and the AccessCode,
VerifyCode, and Mode properties of the LogIn property are set or the
AppHandle and Mode properties are set. On secondary logins, the
Client Agent, if enabled, handles the login and the Silent Login is
bypassed. In other words, if there already is a connection and the
Client Agent is enabled, the Silent Login information is not used.

 NOTE: The "XUS SIGNON SETUP" RPC is called before a
normal login or a Silent Login, and if it identifies the user via Client
Agent at the IP address, that identification is used to log in the user.

Home > Tutorial > Silent Login Examples

Silent Login Examples

Silent Login

Example 1: lmAVCodes

The following is an example of how to use Silent Login by passing
the Access and Verify codes to the TVistaLogin class.

brkrRPCBroker1.KernelLogIn := False;
brkrRPCBroker1.LogIn.Mode := lmAVCodes;
brkrRPCBroker1.LogIn.AccessCode := ********;
brkrRPCBroker1.LogIn.VerifyCodeCode := ********;
brkrRPCBroker1.LogIn.PromptDivison := True;
brkrRPCBroker1.LogIn.OnFailedLogin := myevent;
Try
 brkrRPCBroker1.Connected := True;
except
 exit
end;

If brkrRPCBroker1.Connected is True, then Silent Login has worked.

 REF: For a demonstration using the lmAVCodes, run the
lmAVCodes_Demo.EXE located in the
..\BDK32\Samples\SilentSignOn directory.

Example 2: lmAppHandle

The following is an example of how to use Silent Login by passing an
Application Handle to the TVistaLogin class.

The lmAppHandle mode of the Silent Login is used when an
application starts up a second application. If the second application
tests for arguments on the command line, it is possible for this
application to be started and make a connection to the VistA M
Server without user interaction.

An example of a procedure for starting a second application with
data on the command line to permit a Silent Login using the
LoginHandle provided by the first application is shown below. This is
followed by a procedure that can be called in the processing related
to FormCreate to use this command line data to initialize the
TRPCBroker component for Silent Login.

 CAUTION: The procedures shown here are included within
the RpcSLogin unit, and can be used directly from there.

If the value for ConnectedBroker is nil, the application specified in
ProgLine is started and any command line included in ProgLine is
passed to the application.

In the second application, a call to the Broker should be made
shortly after starting, since the LoginHandle passed in has a finite
lifetime (approximately 20 seconds) during which it is valid for the
Silent Login.

procedure StartProgSLogin(const ProgLine: String ;
ConnectedBroker: TRPCBroker);
var
 StartupInfo: TStartupInfo;
 ProcessInfo: TProcessInformation;
 AppHandle: String;
 CmndLine: String;
begin
 FillChar(StartupInfo, SizeOf(TStartupInfo), 0);
 with StartupInfo do
 begin
 cb := SizeOf(TStartupInfo);
 dwFlags := STARTF_USESHOWWINDOW;
 wShowWindow := SW_SHOWNORMAL;
 end;
 CmndLine := ProgLine;
 if ConnectedBroker <> nil then
 begin
 AppHandle := GetAppHandle(ConnectedBroker);
 CmndLine := CmndLine + ' s='+ConnectedBroker.Server + '
p='
 +
IntToStr(ConnectedBroker.ListenerPort) + ' h='
 + AppHandle + '
d=' + ConnectedBroker.User.Division;
 end;
 CreateProcess(nil, Pchar(CmndLine), nil, nil, False,
 NORMAL_PRIORITY_CLASS, nil, nil, StartupInfo,
ProcessInfo);
end;

{btnStart is clicked to start the second application
Test2.exe}
procedure TForm1.btnStartClick(Sender: TObject);
var
 CurDir: string;
begin
 {Use Test2.exe and expecting it to be in the startup
directory for the current application}
 CurDir := ExtractFilePath(ParamStr(0)) + 'Test2.exe';

 {Now start application with Silent Login}
 StartProgSLogin(CurDir, brkrRPCB1);
end;

The following procedure (CheckCmdLine) would be called in the
FormCreate code of the application being started to check for
command line input, and if relevant to the Broker connection, to set it
up.

This code assumes that s=, p=, d=, and h= are used in conjunction
with the values for Server, ListenerPort, User.Division, and
LoginHandle, respectively.

The command line might look like:

ProgramName.exe s=DHCPSERVER p=9200 d=692
h=~1XM34XYYZZQQ_X

The TRPCB and RpcSLogin units would need to be included in the
USES clause.

procedure CheckCmdLine(brkrRPCB: TRPCBroker);
var
 j: integer;
begin
 // Iterate through possible command line arguments
 for j := 0 to 15 do
 begin
 if ParamStr(j) <> '' then
 Form1.Memo1.Lines.Add(IntToStr(j) + ' ' +
ParamStr(j));
 if Pos('p=',ParamStr(j)) > 0 then

 brkrRPCB.ListenerPort := StrToInt(Copy(ParamStr(j),
 (Pos('=',ParamStr(j))+1),length(ParamStr(j))));
 if Pos('s=',ParamStr(j)) > 0 then
 brkrRPCB.Server := Copy(ParamStr(j),
 (Pos('=',ParamStr(j))+1),length(ParamStr(j)));
 if Pos('h=',ParamStr(j)) > 0 then
 begin
 brkrRPCB.Login.LoginHandle := Copy(ParamStr(j),
 (Pos('=',ParamStr(j))+1),length(ParamStr(j)));
 if brkrRPCB.Login.LoginHandle <> '' then
 begin
 brkrRPCB.KernelLogIn := False;
 brkrRPCB.Login.Mode := lmAppHandle;
 end;
 end;
 if Pos('d=',ParamStr(j)) > 0 then
 brkrRPCB.Login.Division := Copy(ParamStr(j),
 (Pos('=',ParamStr(j))+1),length(ParamStr(j)));
 // for end
 end;
end;

 REF: For a demonstration using the lmAppHandle, run the
lmAppHandle_Demo.EXE located in the
..\BDK32\Samples\SilentSignOn directory.

Home > Tutorial > Handling Divisions During Silent Login

Handling Divisions During
Silent Login

A login may be successful, but if the user has multiple divisions from
which to choose and fails to select one, the connection is terminated
and a failed login message is generated. This becomes a potential
problem in that a Silent Login can have problems if the user has
multiple divisions from which to choose and the PromptDivision
property is not set to True.

If the application wishes to handle the user specification of the
division, it can attempt to set the TRPCBroker component
Connected property to True. If upon return, the Connected property
is still False, it can check the Login.MultiDivision property. If the
MultiDivision property is True, the user has multiple divisions from
which to choose. The application finds the possible values for
selection in the Login.DivList property (i.e., Tstrings). The values that
are present in the DivList property are similar to the following
example:

3
1^SAN FRANCISCO^66235
2^NEW YORK^630
3^SAN DIEGO^664^1

The first (index = 0) entry is the total number of divisions that can be
selected (e.g., 3 in this example). This is followed by the different
divisions comprised of the following pieces:

The second ^-piece of each entry is the division name.

The third ^-piece of each entry is the division number .

The fourth ^-piece with the value of 1, if present in one of the
entries, is the user's default division.

The safest value to set as the Login.Division property might be the
third ^-piece of the selected division.

If the desired division is known ahead of time, it can be set into the
Login.Division property for the TRPCBroker component prior to
attempting the connection.

Home > Tutorial > Windows Registry

Microsoft Windows Registry

Applications built with RPC Broker 1.1 use the Microsoft Windows
Registry to store the available servers and ports accessed via the
Broker.

The Windows Registry replaces the [RPCBroker_Servers] section
of the VISTA.INI file. The VISTA.INI file is no longer used by
applications built with Broker 1.1. However, this file continues to be
used by applications built using RPC Broker 1.0. During the
installation of the Broker, relevant data from the VISTA.INI file is
moved to the Windows Registry. Subsequent reads and writes are
done via the Registry.

 CAUTION: The VISTA.INI file created with RPC Broker 1.0
must not be removed from the Windows directory on the client
workstation. It is still required for 16-bit Broker-based
applications created using RPC Broker 1.0.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Interface
Introduction

DLL Interface Introduction

The functionality of the TRPCBroker component for Delphi is
provided in a 32-bit Dynamic Link Library (DLL) interface, in
BAPI32.DLL. This enables the use of any development product that
can access Windows 32-bit DLLs to create applications that
communicate with VistA M Servers through the RPC Broker.

In Delphi, you have direct access to the TRPCBroker component
itself, and its properties and methods. In other development
environments, you can only access the properties and methods of
the TRPCBroker component through DLL functions. So to
understand the DLL interface, you should understand how the
TRPCBroker component is used in its native environment (Delphi).

DLL Exported Functions

The following special issues should be considered when accessing
RPC Broker functionality through its DLL:

RPC Results from DLL Calls

GetServerInfo Function and the DLL

Header Files

Header files for using the DLL are provided for C (BAPI32.H), C++
(BAPI32.HPP), and Visual Basic (BAPI32.BAS).

Guidelines for C Overview

Guidelines for C++ Overview

Guidelines for Visual Basic Overview

Sample DLL Application

The VB5EGCHO sample application, distributed with the Broker
Development Kit (BDK), demonstrates use of the RPC Broker 32-bit
DLL from Microsoft Visual Basic. The source code is located in the
..\BDK32\Samples\Vb5Egcho directory.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Function
Reference

DLL Exported Functions

The following functions for TRPCBroker components are exported in
BAPI32.DLL:

Function Description

RPCBCall Execute an
RPC.

RPCBCreate Create a
TRPCBroker
component.

RPCBCreateContext Create
context.

RPCBFree Destroy a
TRPCBroker
component.

RPCBMultItemGet Get value of
a Mult item
in a Param.

RPCBMultPropGet Get value of
a Mult
property in a
Param.

RPCBMultSet Set a Mult
item in a
Param to a
value.

RPCBMultSortedSet Sorts a Mult
Param
property.

RPCBParamGet Get the
value of a
Param.

RPCBParamSet Set the
value of a
Param.

RPCBPropGet Get the
value of a
TRPCBroker
component
property.

RPCBPropSet Set the
value of a
TRPCBroker
component
property.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Special
Issues > RPC Results through the DLL

RPC Results from DLL Calls

When executing an RPC on a VistA M Server, results from the RPC
are returned as a text stream. This text stream may or may not have
embedded <CR><LF> character combinations.

In Delphi, when you call an RPC using the TRPCBroker component
directly, the text stream returned from an RPC is automatically
parsed and returned in the TRPCBroker component's Results
property, either in Results[0] or in multiple Results nodes. If there are
no embedded <CR><LF> character combinations in the text stream,
only Results[0] is used. If there are embedded <CR><LF> character
combinations, results are placed into separate Results nodes based
on the <CR><LF> delimiters.

When using the DLL interface, the return value is a text stream, but
no processing of the text stream is performed for you. It is up to you
to parse out what would have been individual Results nodes in
Delphi, based on the presence of any <CR><LF> character
combinations in the text stream.

 NOTE: You must create a character buffer large enough to
receive the entire return value of an RPC.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Special
Issues > GetServerInfo Function and the DLL

GetServerInfo Function and the
DLL

When you use the TRPCBroker component for Delphi, you are able
to call the GetServerInfo function to retrieve the end-user
workstation's server and port settings.

The functionality provided by GetServerInfo is not currently available
through the RPC Broker 32-bit DLL interface. A future version of the
RPC Broker will provide access to the GetServerInfo functionality for
DLL users.

To work around this for now, when using the RPC Broker 32-bit DLL,
you should prompt the user directly for the server and port to
connect.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBCall Function

RPCBCall Function

Examples

Executes a remote procedure call, and fills the passed buffer with the
data resulting from the call. This is equivalent to the TRPCBroker
component's Call method.

Declarations

Software Declaration

Delphi procedure RPCBCall(const RPCBroker: TRPCBroker;
CallResult: PChar);

C char *(__stdcall *RPCBCall) (void *, char *);

C++ char * RPCBCall(char * s);

VB Sub RPCBCall (ByVal intRPCBHandle As Long, ByVal
strCallResult As String)

Parameter Description

Parameter Description

RPCBroker Handle of the Broker component that contains the
name of the remote procedure and all of the required
parameters.

CallResult An empty character buffer that the calling application
must create (allocate memory for) before making this
call. This buffer is filled with the result of the call.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the "RPC Limits" topic.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBCall Examples

RPCBCall Examples

C
RPCBCall(RPCBroker, Value);

C++
// MyInstance is defined as an instance of the TRPCBroker.
MyInstance.RPCBCall(strbuffer);

Visual Basic
Call RPCBCall(intRPCBHandle, strBuffer)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBCreate Function

RPCBCreate Function

Examples

Creates a new RPC Broker component for the application, which can
then be used to connect to the VistA M Server and call remote
procedures.

Declarations

Software Declaration

Delphi function RPCBCreate: TRPCBroker;

C void * (__stdcall *RPCBCreate)(void);

C++ N/A (encapsulated in TRPCBroker class definition)

VB Function RPCBCreate () As Long

Return Value

A handle for the TRPCBroker component created.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBCreate Examples

RPCBCreate Examples

C
// Create the TRPCBroker component instance.
RPCBroker = RPCBCreate();

Visual Basic
intRPCBHandle = RPCBCreate()

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBCreateContext Function

RPCBCreateContext Function

Examples

This procedure calls the TRPCBroker component's CreateContext
method to set up the environment on the VistA M Server for
subsequent RPCs.

Declarations

Software Declaration

Delphi function RPCBCreateContext(const RPCBroker:
TRPCBroker; const Context: PChar): boolean;

C bool (__stdcall *RPCBCreateContext) (void *, char
*);

C++ bool RPCBCreateContext (char * s);

VB Function RPCBCreateContext (ByVal intRPCBHandle
As Long, ByVal strContext As String) As Integer

Return Value
True/1—If context could be created.

False/0—If context could not be created.

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

Context Null-terminated string identifying the option on the
VistA M Server for which subsequent RPCs are
registered.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBCreateContext Examples

RPCBCreateContext Examples

C
// XWB EGCHO is a "B" (Broker) type option in the OPTION
file.
result = RPCBCreateContext(RPCBroker, "XWB EGCHO");

C++
// XWB EGCHO is a "B" (Broker) type option in the OPTION
file.
MyInstance.RPCBCreateContext("XWB EGCHO")

Visual Basic
intResult = RPCBCreateContext(intRPCBHandle, "MY
APPLICATION")
'where MY APPLICATION is a "B" (Broker) type option in the
Option file.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBFree Function

RPCBFree Function

Examples

Destroys the RPC Broker component and releases associated
memory.

Declarations

Software Declaration

Delphi procedure RPCBFree(RPCBroker: TRPCBroker);

C void (__stdcall *RPCBFree)(void *);

C++ N/A (encapsulated in TRPCBroker class definition)

VB Sub RPCBFree (ByVal intRPCBHandle As Long)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component to destroy.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBFree Examples

RPCBFree Examples

C
// Destroy the TRPCBroker component instance.
RPCBFree(RPCBroker);

Visual Basic
RPCBFree (intRPCBHandle)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBMultItemGet Function

RPCBMultItemGet Function

Examples

Returns a requested item in a TRPCBroker Param property's Mult
property.

Declarations

Software Declaration

Delphi procedure RPCBMultItemGet (const RPCBroker:
TRPCBroker; ParamIndex: integer; Subscript,
Value: PChar);

C void (__stdcall *RPCBMultItemGet) (void *, int,
char *, char *);

C++ void RPCBMultItemGet (int i, char * s, char *
t);

VB Sub RPCBMultItemGet (ByVal intRPCBHandle As Long,
ByVal intParIdx As Integer, ByVal strSubscript As
String, ByVal strValue As String)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

ParamIndex Integer index of the parameter that contains the Mult
property.

Subscript Null-terminated string identifying the Mult element to
get.

Value An empty buffer that the calling application must
create (allocate memory for) before making this call.
This buffer is filled with the value of the Mult property
item.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the "RPC Limits" topic.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBMultItemGet Examples

RPCBMultItemGet Examples

C
// The following corresponds to getting the value of
PARAM[0].Mult["0"]
RPCBMultItemGet(RPCBroker, 0 , "0", Value);

C++
MyInstance.RPCBMultItemGet(0 , "0", Value);

Visual Basic
Call RPCBMultItemGet(intRPCBHandle, 0, "0", strResult)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBMultPropGet Function

RPCBMultPropGet Function

Examples

Returns a selected property value of a TRPCBroker Param property's
Mult property.

Declarations

Software Declaration

Delphi procedure
RPCBMultPropGet(const
RPCBroker:
TRPCBroker;
ParamIndex: integer;
Prop,Value: PChar);

C void (__stdcall
*RPCBMultPropGet)
(void *, int, char *,
char *);

C++ void RPCBMultPropGet
(int i , char * s,
char * t);

VB Sub RPCBMultPropGet
(ByVal intRPCBHandle
As Long, ByVal
intParIdx As Integer,
ByVal strProp As
String, ByRef
strValue As String)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

ParamIndex Integer index of the parameter that contains the Mult
property.

Prop Null-terminated string identifying the name of the
TMult property to get.

Value An empty buffer that the calling application must
create (allocate memory for) before making this call.
This buffer is filled with value of the Mult property that
is in the Prop.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the "RPC Limits" topic.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBMultPropGet Examples

RPCBMultPropGet Examples

C
RPCBMultPropGet(RPCBroker, 0, "Count", Value);

C++
MyInstance.RPCBMultPropGet(0, "Count", Value);

Visual Basic
Call RPCBMultPropGet(intRPCBHandle, 0, "Count", strResult)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBMultSet Function

RPCBMultSet Function

Examples

Sets an item in a TRPCBroker Param property's Mult property to a
value.

Declarations

Software Declaration

Delphi procedure RPCBMultSet(const RPCBroker:
TRPCBroker; ParamIndex: integer; Subscript,
Value: PChar);

C void (__stdcall *RPCBMultSet) (void *, int, char
*, char *);

C++ void RPCBMultSet (int i, char * s, char * t);

VB Sub RPCBMultSet (ByVal intRPCBHandle As Long,
ByVal intParIdx As Integer, ByVal strSubscript As
String, ByVal strValue As String)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

ParamIndex Integer index of the parameter that contains the Mult
property.

Subscript Null-terminated string of the Mult item to set.

Value Null-terminated string containing the value that the
Mult item should be set to.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the "RPC Limits" topic.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBMultSet Examples

RPCBMultSet Examples

C
RPCBMultSet(RPCBroker, 0, "1", "12/19/97");

C++
MyInstance.RPCBMultSet(0, "1", "12/19/97");

Visual Basic
Call RPCBMultSet(intRPCBHandle, 0, "1", "12/19/97")

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBMultSortedSet Function

RPCBMultSortedSet Function

Examples

Sets the Sorted property of a Mult property. In essence, sorts and
keeps the Mult property sorted or just leaves it in the order it is
populated.

Declarations

Software Declaration

Delphi procedure RPCBMultSortedSet(const RPCBroker:
TRPCBroker; ParamIndex: integer; Value: boolean);

C void (__stdcall *RPCBMultSortedSet) (void *, int,
bool);

C++ void RPCBMultSortedSet (int i, bool v);

VB Sub RPCBMultSortedSet (ByVal intRPCBHandle As
Long, ByVal intParIdx As Integer, ByVal intValue
As Integer)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

ParamIndex Integer index of the parameter that contains the Mult
property.

Value Can be either a Boolean or, if the calling application
language does not support Boolean type, can be an
integer:

True or 1—Sorts the Mult and keeps it sorted
thereafter when other elements are added.

False or 0—Does not sort the Mult and the
elements are stored in the order they are added.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBMultSortedSet Examples

RPCBMultSortedSet Examples

C
RPCBMultSortedSet(RPCBroker, 0, 1);

C++

MyInstance.RPCBMultSortedSet(0, 1);

Visual Basic

Call RPCBMultPropGet(intRPCBHandle, 0, 1)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBParamGet Function

RPCBParamGet Function

Examples

Returns two values in two parameters: the value and the parameter
type of a Param item.

You can compare the returned parameter type to the following
enumerated values: literal, reference and list.

Declarations

Software Declaration

Delphi procedure RPCBParamGet(const RPCBroker:
TRPCBroker; ParamIndex: integer; var ParamType:
TParamType; var ParamValue: PChar);

C void (__stdcall *RPCBParamGet) (void *, int, int,
char *);

C++ void RPCBParamGet (int i, int j, char * s);

VB Sub RPCBParamGet (ByVal intRPCBHandle As Long,
ByVal intParIdx As Integer, ByVal intParTyp As
Integer, ByVal intParVal As String)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

ParamIndex Integer index of the parameter to get the value.

ParamType This variable, after making the RPCBParamGet call,
is filled with PType property of a Param[ParamIndex].

ParamValue An empty buffer that you must create (allocate
memory for) before making this call. This buffer, after
making the RPCBParamGet call, is filled with Value of
a Param[ParamIndex].

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the "RPC Limits" topic.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBParamGet Examples

RPCBParamGet Examples

C
// PType and Value are variables to retrieve values into.
RPCBParamGet(RPCBroker, 0, PType, Value);

C++
// PType and Value are variables to retrieve values into.
MyInstance.RPCBParamGet(0, PType, Value);

Visual Basic
Call RPCBParamGet(intRPCBHandle, 0, PType, strResult)
' where PType and strResult are variables to retrieve
values into

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBParamSet Function

RPCBParamSet Function

Examples

Sets one Param item's Value and PType properties, in a single call.

Declarations

Software Declaration

Delphi procedure RPCBParamSet(const RPCBroker:
TRPCBroker; const ParamIndex: integer; const
ParamType: TParamType; const ParamValue: PChar);

C void (__stdcall *RPCBParamSet) (void *, int, int,
char *);

C++ void RPCBParamSet (int i, int j, char * s);

VB Sub RPCBParamSet (ByVal intRPCBHandle As Long,
ByVal intParIdx As Integer, ByVal intParTyp As
Integer, ByVal intParVal As String)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

ParamIndex Integer index of the parameter.

ParamType Set to the parameter type for the parameter you are
setting. The value should be one of the integer values
that are valid as a PType:

0 (literal)

1 (reference)

2 (list)

You can use the enumerated values literal, reference
and list, as declared in the C, C++ , or Visual Basic
header file.

ParamValue Null-terminated string containing the Value to set.

 REF: For information about the size of parameters and results
that can be passed to and returned from the TRPCBroker
component, see the "RPC Limits" topic.

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBParamSet Examples

RPCBParamSet Examples

C
RPCBParamSet(RPCBroker, 0, reference, "DUZ");

C++
MyInstance.RPCBParamSet(0, reference, "DUZ");

Visual Basic
Call RPCBParamSet(intRPCBHandle, 0, literal, Text3.Text)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBPropGet Function

RPCBPropGet Function

Examples

Returns a requested property of a TRPCBroker component.

Declarations

Software Declaration

Delphi procedure RPCBPropGet(const RPCBroker:
TRPCBroker; const Prop: PChar; {var} Value:
PChar);

C void (__stdcall *RPCBPropGet) (void *, char *,
char *);

C++ void RPCBPropGet (char * s, char * t);

VB Sub RPCBPropGet (ByVal intRPCBHandle As Long,
ByVal strProp As String, ByVal strValue As
String)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

Prop Null-terminated string of the property to get. Not case-
sensitive. Valid properties to get are:

ClearParameters

ClearResults

Connected

DebugMode

ListenerPort

RemoteProcedure

RPCTimeLimit

RPCVersion

Server

Value An empty buffer that you must create (allocate
memory for) before making this call. After this call, the
buffer is filled with value of the property that is in the
Prop. This procedure takes care of all the necessary
type conversions. Boolean property values are
returned as either of the following:

1 (True)

0 (False)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBPropGet Examples

RPCBPropGet Examples

C
RPCBPropGet(RPCBroker, "Connected", Value);

C++
MyInstance.RPCBPropGet("Connected", Value);

Visual Basic
Call RPCBPropGet(intRPCBHandle, "Server", strResult)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBPropSet Function

RPCBPropSet Function

Examples

Sets a TRPCBroker property to some value.

Declarations

Software Declaration

Delphi procedure RPCBPropSet(const RPCBroker:
TRPCBroker; Prop,Value: PChar);

C void (__stdcall *RPCBPropSet) (void *, char *,
char *);

C++ void RPCBPropSet (char * s, char * t);

VB Sub RPCBPropSet (ByVal intRPCBHandle As Long,
ByVal strProp As String, ByVal strValue As
String)

Parameter Description

Parameter Description

RPCBroker Handle of the TRPCBroker component.

Prop Null-terminated string of the property to se; not case-
sensitive. Valid properties to set are:

ClearParameters

ClearResults

Connected

DebugMode

ListenerPort

RemoteProcedure

RPCTimeLimit

RPCVersion

Server

Value Null-terminated string of the value to which the Prop
property should be set. This procedure takes care of
converting the passed in value to whatever type the
property expects. For Boolean properties, pass in
either of the following:

1 (True)

0 (False)

Home > DLL Interfaces (C+, C++, Visual Basic) > DLL Exported
Functions > RPCBPropSet Examples

RPCBPropSet Examples

C
RPCBPropSet(RPCBroker, "ListenerPort", "9999");

C++
MyInstance.RPCBPropSet("ListenerPort", "9999");

Visual Basic
Call RPCBPropSet(intRPCBHandle, "Server", cboServer.Text)

Home > DLL Interfaces (C+, C++, Visual Basic) > C++ Guidelines >
Overview: C++ Guideline

Overview: Guidelines for C++

The BAPI32.HPP header file defines a class "wrapper" around the
RPC Broker 32-bit DLL, defining a TRPCBroker C++ class. Objects
of this class include all functions exported in the DLL, as methods of
the TRPCBroker C++ class.

TRPCBroker C++ class methods

One feature of wrapping a class around the RPC Broker 32-bit DLL
is that all the ordinary details of working with a DLL (loading the DLL,
getting the addresses of the functions in the DLL, and freeing the
DLL) are done within the class definition. When you initialize the
class, all of the details of loading and unloading the detail
(LoadLibrary, GetProcAddress, and FreeLibrary) are done for you.

To use objects of the class, simply initialize the class, and then
create and destroy objects of the class.

To use the TRPCBroker C++ class that encapsulates BAPI32.DLL,
do the following:

1. Initialize the Class

2. Create Broker Instances

3. Connect to the Server

4. Execute RPCs

5. Destroy Broker Instances

Home > DLL Interfaces (C+, C++, Visual Basic) > C++ Guidelines >
C++ Class Methods

C++: TRPCBroker C++ Class
Methods

The functions in the RPC Broker 32-bit DLL are encapsulated in the
following TRPCBroker C++ class methods:

DLL Function TRPCBroker C++
Class Method

RPCBCall char * RPCBCall(
char * s);

RPCBCreateContext bool
RPCBCreateContext
(char * s);

RPCBMultItemGet void
RPCBMultItemGet (
int i, char * s, char *
t);

RPCBMultPropGet void
RPCBMultPropGet

(void * ptr, int i , char
* s, char * t);

RPCBMultSet void RPCBMultSet (
int i, char * s, char *
t);

RPCBMultSortedSet void
RPCBMultSortedSet
(void * ptr, int i, bool
v);

RPCBParamGet void
RPCBParamGet (
int i, int j, char * s);

RPCBParamSet void
RPCBParamSet (int
i, int j, char * s);

RPCBPropGet void RPCBPropGet (
char * s, char * t);

RPCBPropSet void RPCBPropSet (
char * s, char * t);

Home > DLL Interfaces (C+, C++, Visual Basic) > C++ Guidelines >
C++ Initialize the Class

C++: Initialize the Class

The first step to using the RPC Broker 32-bit DLL in a C++ program
is to load the DLL and get the process addresses for the exported
functions.

To initialize access to the Broker DLL functions, do the following:

1. Include bapi32.hpp in the program:

#include bapi32.hpp

This includes the TRPCBroker C++ class definition in the
program.

2. Later, when you create a TRPCBroker C++ class object in the
program, the class definition takes care of the following:

Loading the DLL if not already loaded.

Mapping the DLL functions if not already mapped.

Creating the instance of the TRPCBroker component.

Home > DLL Interfaces (C+, C++, Visual Basic) > C++ Guidelines >
C++ Create Broker Instances

C++: Create Broker Instances

To create instances of TRPCBroker C++ class objects in a C++
program, do the following:

1. Create a variable of type TRPCBroker. This does the following:

Initializes the TRPCBroker class.

Creates a TRPCBroker C++ class object instance.

Creates a TRPCBroker component.

// Initialize the TRPCBroker class.
TRPCBroker RPCInst;

2. Access the properties and methods of the created TRPCBroker
component through the TRPCBroker C++ class object.

Home > DLL Interfaces (C+, C++, Visual Basic) > C++ Guidelines >
C++ Connect to the Server

C++: Connect to the Server

To connect to the VistA M Server from the C++ program, do the
following:

1. Set the server and port to connect:

// Set the Server and Port properties to determine
where to connect.
RPCInst.RPCBPropSet("Server", server);
RPCInst.RPCBPropSet("ListenerPort", "9999");

2. Set the Connected property to True; this attempts a connection
to the VistA M Server:

// Set the Connected property to True, to connect.
RPCInst.RPCBPropSet("Connected", "1");

3. Check if you are still connected. If so, continue because the
connection was made. If not, quit or branch accordingly:

// If still connected, can continue.
RPCInst.RPCBPropGet("Connected", Value);
if (atoi(Value) != 1) return false;

4. Attempt to create context for the application's "B"-type option. If
you cannot create context, quit or branch accordingly. If
RPCBCreateContext returns True, then you are ready to call all
RPCs registered to the application's "B"-type option:

// Create Context for your application's option (in
this case, XWB EGCHO).
result = RPCInst.RPCBCreateContext("XWB EGCHO");
return result;

Home > DLL Interfaces (C+, C++, Visual Basic) > C++ Guidelines >
C++ Execute RPCs

C++: Execute RPCs

If you can make a successful connection to the RPC Broker VistA M
Server, and create an application context, you can execute any
RPCs registered to your context.

To execute RPCs from a C++ program, do the following:

1. Create a character buffer large enough to hold your RPC's
return value:

char Value [1024];

2. Set the RemoteProcedure property of the TRPCBroker
component to the RPC to execute:

RPCInst.RPCBPropSet("RemoteProcedure","XWB GET VARIABLE
VALUE");

3. Set the Param values for any parameters needed by the RPC.
In the following example, one TRPCBroker Param node is set
(the equivalent of Param[0]):

a. A value of 0 for parameter 1 denotes the integer index of
the Param node being set (Param[0]).

b. A value of reference for parameter 2 denotes the setting for
the equivalent of Param[0].PType. This uses the
enumerated values for PType declared in the header file.

c. A value of "DUZ" for parameter 3 denotes that the
equivalent of Param[0].Value is "DUZ":

RPCInst.RPCBParamSet(0, reference, "DUZ");

4. Use the RPCBCall method to execute the RPC:

RPCInst.RPCBCall(Value);

The return value from the RPC is returned in the first parameter (in
this case, the Value character buffer).

Home > DLL Interfaces (C+, C++, Visual Basic) > C++ Guidelines >
C++ Destroy Broker Instances

C++: Destroy Broker Instances

You do not need to do anything special to free up memory used by
the TRPCBroker component instances and their companion
TRPCBroker C++ class objects. They are automatically destroyed
when your program terminates, just as normal variables are
automatically destroyed.

Also, when your program terminates, the FreeLibrary Windows API
call is automatically executed to unload the RPC Broker 32-bit DLL,
so there is no need to do this manually.

Home > DLL Interfaces (C+, C++, Visual Basic) > C Guidelines >
Overview: C Guidelines

Overview: Guidelines for C

The BAPI32.H header file defines the function prototypes for all
functions exported in the RPC Broker 32-bit DLL.

DLL Exported Functions

To use the DLL Broker functions, using C, exported in BAPI32.DLL,
do the following:

1. Initialize—LoadLibrary and GetProcAddress

2. Create Broker Components

3. Connect to the Server

4. Execute RPCs

5. Destroy Broker Components

Home > DLL Interfaces (C+, C++, Visual Basic) > C Guidelines > C:
Initialize LoadLibrary and GetProcAddress

C: Initialize—LoadLibrary and
GetProcAddress

The first step to using the RPC Broker 32-bit DLL in a C program is
to load the DLL and get the process addresses for the exported
functions.

To initialize access to the Broker DLL functions, do the following:

1. Use the Windows API LoadLibrary function to load the DLL.

HINSTANCE hLib = LoadLibrary("bapi32.dll");
if((unsigned)hLib<=HINSTANCE_ERROR)
{
 /* Add your error handler for case where library
fails to load. */
 return 1;
}

2. If you successfully load the DLL, map function pointers to the
addresses of the functions in the DLL that you need for your
application:

RPCBCreate = (void *(__stdcall*)())
GetProcAddress(hLib, "RPCBCreate");
RPCBFree = (void (__stdcall*)(void *))
GetProcAddress(hLib, "RPCBFree");
RPCBCall = (char *(__stdcall*)(void *, char *))
GetProcAddress(hLib, "RPCBCall");
RPCBCreateContext = (bool (__stdcall*)(void *, char *))
GetProcAddress(hLib, "RPCBCreateContext");
RPCBMultSet = (void (__stdcall*)(void *, int, char *,
char *)) GetProcAddress(hLib, "RPCBMultSet");
RPCBParamGet = (void (__stdcall*)(void *, int, int,
char *)) GetProcAddress(hLib, "RPCBParamGet");

RPCBParamSet = (void (__stdcall*)(void *, int, int,
char *)) GetProcAddress(hLib, "RPCBParamSet");
RPCBPropGet = (void (__stdcall*)(void *, char *, char
*)) GetProcAddress(hLib, "RPCBPropGet");RPCBPropGet =
(void (__stdcall*)(void *, char *, char *))
GetProcAddress(hLib, "RPCBPropGet");
RPCBPropSet =(void (__stdcall*)(void *, char *, char
*)) GetProcAddress(hLib, "RPCBPropSet");
//
// GetProcAddress, returns null on failure.
//
if(RPCBCreate == NULL || RPCBFree == NULL || RPCBCall
== NULL || RPCBCreateContext == NULL
 || RPCBMultSet == NULL || RPCBParamGet == NULL ||
RPCBParamSet == NULL || RPCBPropGet == NULL
 || RPCBPropSet == NULL)
{
/* Add your error handler for cases where functions are
not found. */
return 1;
}

Now you can use functions exported in the DLL.

Home > DLL Interfaces (C+, C++, Visual Basic) > C Guidelines > C:
Create Broker Components

C: Create Broker Components

To create TRPCBroker components in your C program, do the
following:

1. Create a pointer for the TRPCBroker component:

// Generic pointer for the TRPCBroker component
instance.
void * RPCBroker;

2. Call the RPCBCreate method to create a TRPCBroker
component and return its address into the pointer you created:

// Create the TRPCBroker component instance.
RPCBroker = RPCBCreate();

Now you can use the pointer to the created Broker component to call
its methods.

Home > DLL Interfaces (C+, C++, Visual Basic) > C Guidelines > C:
Connect to the Server

C: Connect to the Server

To connect to the VistA M Server from the C program, do the
following:

1. Set the server and port to connect:

// Set the Server and Port properties to determine
where to connect.
RPCBPropSet(RPCBroker,"Server", "BROKERSERVER");
RPCBPropSet(RPCBroker, "ListenerPort", "9200");

2. Set the Connected property to true; this attempts a connection
to the VistA M Server:

// Set the Connected property to True, to connect.
RPCBPropSet(RPCBroker, "Connected", "1");

3. Check if you are still connected. If so, continue because the
connection was made. If not, quit or branch accordingly:

// If still connected, can continue.
RPCBPropGet(RPCBroker, "Connected", Value);
if (atoi(Value) != 1) return false;

4. Attempt to create context for your application's "B"-type option.
If you cannot create context, you should quit or branch
accordingly. If RPCBCreateContext returns True, then you are
ready to call all RPCs registered to your application's "B"-type
option:

// Create Context for your application's option (in
this case, XWB EGCHO).
result = RPCBCreateContext(RPCBroker, "XWB EGCHO");
return result;

Home > DLL Interfaces (C+, C++, Visual Basic) > C Guidelines > C:
Execute RPCs

C: Execute RPCs

If you can make a successful connection to the RPC Broker VistA M
Server, and create an application context, you can execute any
RPCs registered to your context.

To execute RPCs from your C program, do the following:

1. Create a character buffer large enough to hold your RPC's
return value:

static char Value [1024];

2. Set the RemoteProcedure property of the TRPCBroker
component to the RPC to execute:

RPCBPropSet(RPCBroker, "RemoteProcedure","XWB GET
VARIABLE VALUE");

3. Set the Param values for any parameters needed by the RPC.
In the following example, one TRPCBroker Param node is set
(the equivalent of Param[0]):

a. A value of 0 for parameter 2 denotes the integer index of
the Param node being set (Param[0]).

b. A value of reference for parameter 3 denotes the setting for
the equivalent of Param[0].PType. This uses the
enumerated values for PType declared in the header file.

c. A value of "DUZ" for parameter 4 denotes that the
equivalent of Param[0].Value is "DUZ":

RPCBParamSet(RPCBroker, 0, reference, "DUZ");

4. Use the RPCBCall method to execute the RPC:

RPCBCall(RPCBroker, Value);

The return value from the RPC is returned in the second parameter
(in this case, the Value character buffer).

Home > DLL Interfaces (C+, C++, Visual Basic) > C Guidelines > C:
Destroy Broker Components

C: Destroy Broker Components

When you are done using any TRPCBroker component, you should
call its destroy method to free it from memory.

To destroy TRPCBroker components from your C program, do the
following:

1. Make sure the TRPCBroker component is not connected:

RPCBPropSet(RPCBroker, "Connected", "0");

2. Call the RPCBFree method to destroy the object:

// Destroy the RPCBroker component instance.
RPCBFree(RPCBroker);

3. When you have destroyed all TRPCBroker components, but
before your application terminates, you should call the Windows
API FreeLibrary function to unload the DLL:

FreeLibrary(hLib);

Home > DLL Interfaces (C+, C++, Visual Basic) > Visual Basic
Guidelines > Overview: Visual Basic Guidelines

Overview: Guidelines for Visual
Basic

The BAPI32.BAS header file defines the function prototypes for all
functions exported in the RPC Broker 32-bit DLL.

DLL Exported Functions

To use the DLL Broker functions, using Visual Basic, exported in
BAPI32.DLL, do the following:

1. Initialize

2. Create Broker Components

3. Connect to the Server

4. Execute RPCs

5. Destroy Broker Components

Sample DLL Application

The VB5EGCHO sample application, distributed with the Broker
Development Kit (BDK), demonstrates use of the RPC Broker 32-bit
DLL from Microsoft Visual Basic. The source code is located in the
..\BDK32\Samples\Vb5Egcho directory.

Home > DLL Interfaces (C+, C++, Visual Basic) > Visual Basic
Guidelines > Visual Basic: Initialize

Visual Basic: Initialize

The first step to using the RPC Broker 32-bit DLL in a Visual Basic
program is to load the DLL and get the process addresses for the
exported functions.

To initialize access to the Broker DLL functions, do the following:

1. Include BAPI32.BAS as a module in your Visual Basic program.

2. Visual Basic takes care of loading the DLL and mapping its
functions.

Home > DLL Interfaces (C+, C++, Visual Basic) > Visual Basic
Guidelines > Visual Basic: Create Broker Components

Visual Basic: Create Broker
Components

To create TRPCBroker components in your Visual Basic program, do
the following:

1. Create a variable to be a handle for the TRPCBroker
component:

Public intRPCBHandle As Long

2. Call the RPCBCreate method to create a TRPCBroker
component and return its address into the variable you created:

intRPCBHandle = RPCBCreate()

Now, you can use the handle to the created Broker component to
call its methods.

Home > DLL Interfaces (C+, C++, Visual Basic) > Visual Basic
Guidelines > Visual Basic: Connect to the Server

Visual Basic: Connect to the
Server

To connect to the VistA M Server from the Visual Basic program, do
the following:

1. Set the server and port to connect:

Call RPCBPropSet(intRPCBHandle, "Server",
"BROKERSERVER")
Call RPCBPropSet(intRPCBHandle, "ListenerPort", "9999")

2. Set the Connected property to true; this attempts a connection
to the VistA M Server:

Call RPCBPropSet(intRPCBHandle, "Connected", "1")

3. Check if you are still connected. If so, continue because the
connection was made. If not, quit or branch accordingly:

RPCBPropGet(intRPCBHandle, "Connected", strResult)

4. Attempt to create context for your application's "B"-type option.
If you cannot create context, quit or branch accordingly. If
RPCBCreateContext returns True, then you are ready to call all
RPCs registered to the application's "B"-type option:

intResult = RPCBCreateContext(intRPCBHandle, "MY
APPLICATION")

Home > DLL Interfaces (C+, C++, Visual Basic) > Visual Basic
Guidelines > Visual Basic: Execute RPCs

Visual Basic: Execute RPCs

If you can make a successful connection to the RPC Broker VistA M
Server, and create an application context, you can execute any
RPCs registered to your context.

To execute RPCs from your Visual Basic program, do the following:

1. Create a character buffer large enough to hold your RPC's
return value:

Public strBuffer As String * 40000

2. Set the RemoteProcedure property of the TRPCBroker
component to the RPC to execute:

Call RPCBPropSet(intRPCBHandle, "RemoteProcedure", "XWB
GET VARIABLE VALUE")

3. Set the Param values for any parameters needed by the RPC.
In the following example, one TRPCBroker Param node is set
(the equivalent of Param[0]):

a. A value of 0 for parameter 2 denotes the integer index of
the Param node being set (Param[0]).

b. A value of reference for parameter 3 denotes the setting for
the equivalent of Param[0].PType. This uses the
enumerated values for PType declared in the header file.

c. A value of "DUZ" for parameter 4 denotes that the
equivalent of Param[0].Value is "DUZ":

Call RPCBParamSet(intRPCBHandle, 0, reference,
"DUZ");

4. Use the RPCBCall method to execute the RPC:

Call RPCBCall(intRPCBHandle, strBuffer)

The return value from the RPC is returned in the second parameter
(in this case, the Value character buffer).

Home > DLL Interfaces (C+, C++, Visual Basic) > Visual Basic
Guidelines > Visual Basic: Destroy Broker Components

Visual Basic: Destroy Broker
Components

When you are done using any TRPCBroker component, you should
call its destroy method to free it from memory.

To destroy TRPCBroker components from your Visual Basic
program, do the following:

1. Make sure the TRPCBroker component is not connected:

Call RPCBPropSet(intRPCBHandle, "Connected", "0")

2. Call the RPCBFree method to destroy the object:

RPCBFree(intRPCBHandle)

Visual Basic takes care of the details of unloading the DLL.

Home > DLL Interfaces (C+, C++, Visual Basic) > XUPROGMODE

XUPROGMODE

A security key distributed by Kernel as part of its Menu Manager
(MenuMan). This security key enables access to a number of
developer-oriented options in Kernel.

	ServiceSection Property
	Home
	Overview
	TCCOWRPCBroker
	TContextorControl
	TRPCBroker
	TSharedBroker
	TSharedRPCBroker
	TXWBRichEdit
	TMult
	TParamRecord
	TParams
	TVistaLogin
	TVistaUser
	TXWBWinsock
	Hash
	LoginFrm
	MFunStr
	RPCConf1
	RpcSLogin
	SplVista
	TRPCB
	TVCEdit
	Remote Procedure Calls (RPCs)
	Other RPC Broker APIs
	Debugging and Troubleshooting
	Tutorial
	DLL Interface
	Broker Overview
	Definitions
	About this Version of the RPC Broker
	What's New in the BDK
	Developer Considerations
	Application Considerations
	Online Help
	Silent Login
	execute a call
	Creating RPCs from scratch
	an existing M API
	RPC Security: How to Register an RPC
	Units
	Classes
	Objects
	Components
	Types
	Methods
	Routines, Functions, and Procedures
	Classes Added
	Components Added
	Design-time and Run-time Packages
	Functionality Added

