The first thing you need is the user’s SSN. This is required to get a visitor account. There is no “standard” RPC for this so we use XWB GET VARIABLE VALUE. Here is the Java routine that does this:
private String getUserSSN(String ID) throws MDOException

{

VistaMessage vm = new VistaMessage("XWB GET VARIABLE VALUE");

String arg = "@\"^VA(200," + ID + ",1)\"";

vm.addParameter(VistaMessage.REFERENCE,arg);

String rtn = call(vm.buildMessage());

if (rtn.equals(""))

{

throw (new MDOException("Unable to get user SSN"));

}

String[] flds = StringUtils.Split(rtn,StringUtils.CARET);

return flds[8];

}

The VistaMessage object builds the string to send to Vista. In the Delphi version this functionality is inside the broker. You can probably translate this into Delphi broker talk very easily.

We need to ascertain that this is a valid SSN. Here is my routine to do this:

private static boolean validSSN(String ssn)

{

if (ssn == null || ssn.equals("")) return false;

if (ssn.length() != 9) return false;

if (!StringUtils.isNumeric(ssn)) return false;

if (ssn.startsWith("000")) return false;

if (ssn.substring(3,5).equals("00")) return false;

if (ssn.substring(5).equals("0000")) return false;

return true;

}

Now you’re ready to set up as a visitor. Here are some constants:

public static final String CAPRI_CONTEXT = "DVBA CAPRI GUI";

private static final String DELEGATE_SUBSCRIPT = "200.19";

private static final String MENU_SUBSCRIPT = "200.03";
Next, connect to the remote Vista just like you would with the local, with the TCPConnect call. This requires a newly instantiated Broker of course.

Once connected, we want to “login” as a visitor. We will use the XUS SIGNON SETUP RPC to do this. It will require a special parameter:

String arg = "-31^DVBA_^";

arg += user.getSSN() + '^' + user.getName() + '^' +

userSite.getName() + '^' + userSite.getID() + '^' + user.getID();

arg += "^No phone";

In other words,
-31^DVBA_^UserSSN^UserName^SiteName^SiteCode^UserDUZ^No phone

If you have trouble getting any of those let me know. So you make the XUS SIGNON SETUP call with this string as a literal parameter. Here’s what happens inside the M kernel:

· Because of the parameter the single signon code is invoked

· It checks the site’s NPF (user file) for the SSN you passed. If it finds it there already is an account (might be a visitor or a standard, non-visitor one). If it doesn’t find it it creates a new visitor account with the data you passed. So make sure you get it right.

· Now there is an account. The next step is to set the CAPRI context. The CAPRI patch does this in 3 steps. One, it gives the account the CAPRI delegated option. That allows it to give the account the CAPRI context as a secondary menu option. Finally, it removes the no longer needed delegated option. After this you have a visitor account with CAPRI context.
But what we need is MAG WINDOWS context and we can’t do that in the M patch. That has to be done in our code. So we want to do those same 3 steps, only with MAG WINDOWS context. Ah, but there is always something else you must do first. In fact, in this case, there a few things to do first.
First, what if the remote account was already MAG-enabled? Let’s test that first. If it is we save ourselves a bunch of RPCs:

try

{

dao.authorize(VistaDataSourceDAO.CPRS_CONTEXT);

dao.DUZ = getVisitorDUZ(dao, user);

return;

}

catch (MDOException me)

{

// just means hasn't visited before

}

That authorize method is merely the XWB CREATE CONTEXT RPC with MAG WINDOWS as the parameter. If it fails, the account doesn’t have MAG context and we need to create it. If it succeeds we just need to get the user’s DUZ at the remote site for our logging or whatever. Here’s that routine:

private static String getVisitorDUZ(VistaDataSourceDAO dao, User user) throws MDOException

{

VistaMessage msg = new VistaMessage("XWB GET VARIABLE VALUE");

String arg = "$O(^VA(200,\"SSN\"," + user.getSSN() + ",0))";

msg.addParameter(VistaMessage.REFERENCE,arg);

String rtn = dao.call(msg.buildMessage());

if (!StringUtils.isNumeric(rtn))

{

throw new MDOException("Non-numeric DUZ");

}

return rtn;

}

Before proceeding we need to set the CAPRI context. All the patch did was create the secondary menu option. Our app is still set to XUS SIGNON context so use XWB CREATE CONTEXT with DVBA CAPRI GUI as the literal parameter.
Now we can execute the RPCs in the CAPRI context, specifically, XWB GET VARIABLE VALUE and DDR FILER. Note that the previously executed XWB GET VARIABLE VALUE calls were either to the local Vista, which had CPRS context enabled, or to a remote Vista at which CAPRI context was enabled.
Now we’re ready to do the thing we had to do first, namely, get the remote sites MAG WINDOWS IEN. The IEN of a context is probably not the same at every site, so…

private static String getContextIEN(VistaDataSourceDAO dao, String context) throws MDOException

{

VistaMessage msg = new VistaMessage("XWB GET VARIABLE VALUE");

String arg = "$O(^DIC(19,\"B\",\"" + context + "\",0))";

msg.addParameter(VistaMessage.REFERENCE,arg);

String rtn = dao.call(msg.buildMessage());

if (!StringUtils.isNumeric(rtn))

{

throw new MDOException("Non-numeric context IEN for " + context);

}

return rtn;

}

Pass “MAG WINDOWS” to this routine and you will get its IEN. Now we need to get the DUZ of the visitor account. I’ve already shown that routine in the last page. Next comes a funny-looking step. We check to see if the visitor account already has MAG WINDOWS as an option. But we already did this once, right? Well, yes, but in playing around with this stuff we found that flaky SSN’s cause trouble and one place to catch it is here. If this call comes back true, it’s probably looking at 2 separate accounts and you want to stop. Here’s the routine:
private static boolean hasOption(VistaDataSourceDAO dao, String contextIEN) throws MDOException

{

VistaMessage msg = new VistaMessage("XWB GET VARIABLE VALUE");

String arg = "$O(^VA(200," + dao.DUZ + ",203,\"B\"," + contextIEN + ",0))";

msg.addParameter(VistaMessage.REFERENCE,arg);

String rtn = dao.call(msg.buildMessage());

if (rtn.equals("")) return false;

if (!StringUtils.isNumeric(rtn))

{

throw new MDOException("Non-numeric option number for " + contextIEN);

}

return (rtn.equals("0") ? false : true);

}

Pass your visitor DUZ and MAG IEN to this routine and hope it comes back false.

Now, finally, we are ready for the CAPRI 3-step. These are the lines of code from my routine:
// Assign the user the CPRS delegate option

String cprsDelegateOptionNumber = assignOption(dao,DELEGATE_SUBSCRIPT,cprsIEN);

// Now we can assign the user the CPRS menu option

String cprsMenuOptionNumber = assignOption(dao,MENU_SUBSCRIPT,cprsIEN);

// Now we remove the CPRS delegate option

removeOption(dao,DELEGATE_SUBSCRIPT,cprsDelegateOptionNumber);
Of course you want to pass the MAG IEN. The dao param is basically just the visitor DUZ. Here are these two routines:

private static String assignOption(VistaDataSourceDAO dao, String subscript, String contextIEN) throws MDOException

{

VistaMessage msg = new VistaMessage("DDR FILER");

msg.addParameter(VistaMessage.LITERAL,"ADD");

String arg = subscript + "^.01^+1," + dao.DUZ + ",^" + contextIEN;

msg.addParameter(VistaMessage.LIST,".x",arg);

String rtn = dao.call(msg.buildMessage());

return parseOptionNumber(rtn);

}

private static String parseOptionNumber(String rtn) throws MDOException

{

String[] lines = StringUtils.Split(rtn,StringUtils.CRLF);

if (!lines[0].equals("[Data]"))

{

throw new MDOException("Invalid return format (" + rtn + ")");

}

if (lines[1].startsWith("[BEGIN_diERRORS]"))

{

throw new MDOException(rtn.substring(8));

}

if (lines.length == 1)

{

throw new MDOException("No option number data");

}

int p = lines[1].indexOf(",^");

String optNum = lines[1].substring(p+2);

if (!StringUtils.isNumeric(optNum))

{

throw new MDOException("Non-numeric option number");

}

return optNum;

}
private static void removeOption(VistaDataSourceDAO dao, String subscript, String optNum) throws MDOException

{

VistaMessage msg = new VistaMessage("DDR FILER");

msg.addParameter(VistaMessage.LITERAL,"EDIT");

String arg = subscript + "^.01^" + optNum + "," + dao.DUZ + ",^@";

msg.addParameter(VistaMessage.LIST,".x",arg);

String rtn = dao.call(msg.buildMessage());

if (!rtn.equals("[Data]"))

{

throw new MDOException("ERROR: " + rtn);

}

}
Let me know if you have any trouble translating these.

Now comes the ugliest part of the algorithm. This may or may not happen with the Delphi broker, but with the Java broker we will not be able to set our new context unless we give the remote Vista a few seconds to catch its breath. I’ve played with this and it is at this point precisely that we need to sleep for about 2 seconds. I have no idea why.
At this point, our visitor account has two context options, CAPRI and MAG WINDOWS. To be polite, we want to lose the CAPRI option. So…
String capriIEN = getContextIEN(dao,CAPRI_CONTEXT);

if (!capriIEN.equals(""))

{

String capriMenuOptionNumber = getOptionIEN(dao,MENU_SUBSCRIPT,capriIEN);

if (!capriMenuOptionNumber.equals(""))

removeOption(dao,MENU_SUBSCRIPT,capriMenuOptionNumber);

}

This should be clear enough. All the routines have already been explained. So at last we come to the final step, the big payoff:

dao.authorize(dao.CPRS_CONTEXT);
This simply XWB CREATE CONTEXT and you will of course use “MAG WINDOWS” as your literal parameter.

After that, you have an account at the remote site that will execute your RPCs. I leave the account set to the CPRS context so I don’t have to recreate it every time. You should probably do the same. In fact, duh. See my latest email message.
