

VistALink

VERSION 1.0

Developer / System Manager Manual

October 2, 2003

Department of Veterans Affairs

VistA Health Systems Design & Development (HSD&D)

Revision History

Revision History
Table 1, below, summarizes the VistALink Developer / System Manager Manual revision history.

Date Revision Description Author(s)
April 18, 2003 N/A Initial draft content Foundations team

May 23, 2003 .9 Revisions from CPRS-R, VHA
Technical Writers and VHA Testing
received / implemented

Foundations team /
Reviewers

October 2, 2003 1.0 Revisions from VistALink
Development Team received /
implemented

Foundations team

Table 1: VistALink Developer / System Manager Manual Revision History

October 2003 Developer / System Manager Manual i
VistALink Version 1.0

Contents

Contents
Revision History ... i

Figures... vii

Tables ... viii

Using This Manual ..ix

Introduction ... xii

Part I – Development Workstation and Sample Application Installation 1

Chapter 1: Installing VistALink on a Developer Workstation... 1

1.1. Overview... 1

1.2. Installation... 1

1.2.1. Distribution Structure .. 1

1.2.2. Installation Instructions ... 1

1.2.3. Supporting Libraries Required by VistALink ... 2

1.2.4. Java Classpath Considerations .. 2

1.2.5. Additional Installation References .. 2

1.3. Public VistALink APIs Documented in Javadoc.. 2

Chapter 2: Sample Applications.. 4

2.1 Overview... 4

2.2 About Installing J2SE Applications.. 4

2.3 Set Up and Run the Sample Applications... 4

2.3.1 JRE Setup... 4

2.3.2 Java Library Installation .. 4

2.3.3 VistALink Library Installation .. 5

2.3.4 Grant Yourself Kernel Access to the Sample Application .. 5

2.3.5 Install the Sample Application Files .. 5

2.3.6 Set Classpath and Java Locations and Run the Sample Applications.......................... 5

2.3.7 Optional: To Enable Log4J Logging: .. 8

2.3.8 Optional: JVM Command-Line Parameters – JAXP XML Parser Implementations .. 8

ii Developer / System Manager Manual October 2003
VistALink Version 1.0

Figures

Chapter 3: Testing the Listener ... 10

3.1 Using the Swing Sample Application ... 10

3.2 Verifying and Testing the Listener Network Connection................................... 12

3.3 Troubleshooting .. 13

3.3.1 JRE Version.. 13

3.3.2 Determining If VistALink Libraries Are Installed on the Client Workstation........... 14

Part II – Site Management... 15

Chapter 4: Managing the Listener... 15

4.1 Overview... 15

4.1.1 VistALink Listeners and Ports ... 15

4.1.2 Differences Between Cache and DSM / VMS ... 15

4.2 Listener Management for Cache NT and Cache VMS Systems......................... 16

4.2.1 Creating / Editing Listener Configurations .. 17

4.2.2 To Start All Configured Listeners .. 17

4.2.3 To Start a Single Unconfigured Listener.. 17

4.2.4 TO Stop a Configured or Unconfigured Listener ... 17

4.2.5 How to Schedule Listener Startup at System Startup... 18

4.2.6 Working With the Foundation Site Parameters File... 19

4.2.7 Editing Site Parameters .. 19

4.3 Listener Management for DSM / VMS Systems .. 21

4.3.1 Setting Up An OpenVMS User Account ... 22

4.3.2 Setting Up A Home Directory for the VistALink Handler Account 22

4.3.3 Setting Up and Enabling the TCP/IP Service... 24

4.3.3.1 Obtaining an Available Listener Port (for Alpha / VMS systems only) 24

4.3.4 Creating the Service ... 25

4.3.5 Access Control List (ACL) Issues.. 26

4.3.6 How to Control the Number of Log Files Created by the TCP/IP Service 28

4.3.7 Editing the Foundations / VistALink Site Parameters for OpenVMS........................ 29

October 2003 Developer / System Manager Manual iii
VistALink Version 1.0

Contents

Chapter 5: Java Logging Management ... 30

5.1 Using Loggers... 30

5.1.1 Recommended Loggers ... 32

5.1.2 Specifying the log4j Configuration File .. 32

5.1.3 Preventing Users From Snooping log4j Logs in J2SE Applications 33

Chapter 6: Security Management.. 34

6.1 Authentication Security .. 34

6.2 Authentication Timeout Behavior... 34

6.3 RPC Authorization.. 34

6.5 Logger Security... 35

Part III – VistALink Programming ... 36

Chapter 7: Authenticating and Connecting to VistA ... 36

7.1 Overview... 36

7.1.1 JAAS Overview ... 36

7.2 VistALink JAAS Implementation... 37

7.2.1 VistaLoginModule ... 37

7.2.2 JAAS Login Configuration Overview ... 37

7.2.3 VistALink-Specific JAAS Login Configuration.. 37

7.2.4 Passing the JAAS Login Configuration(s) to Your JVM .. 38

7.2.5 Selecting the JAAS Configuration From an Application... 38

7.2.6 VistaLoginModule Callback Handlers .. 39

7.3 Putting the Pieces Together: VistALink JAAS Login .. 39

7.3.1 Logging in to VistA ... 39

7.4 After Successfully Logging In .. 40

7.4.1 Retrieving the VistaKernelPrincipal .. 40

7.4.2 Retrieving the Authenticated Connection From the Principal 40

7.4.3 Retrieving User Demographic Information ... 41

7.4.4 Logging Out... 42

iv Developer / System Manager Manual October 2003
VistALink Version 1.0

Figures

7.5 Catching Login Exceptions... 43

7.5.1 VistaLoginModule Exceptions... 43

7.6 Unit Testing and VistALink.. 44

Chapter 8: Executing Requests .. 45

8.1 Remote Procedure Calls (RPCs)... 45

8.2 Request Processing ... 45

8.2.1 Get an RpcRequest Object: RpcRequestFactory Class .. 45

8.2.2 Set RpcRequest Parameters: Explicit Style.. 46

8.2.3 Set RpcRequest Parameters: List Style .. 47

8.2.4 Other Useful RpcRequest Methods.. 49

8.3 Response Processing... 50

8.3.1 RpcResponseFactory Class .. 50

8.3.2 RpcResponse Class .. 50

8.3.3 Sample Code .. 50

8.3.4 Parsing RPC Results... 51

8.3.5 XML Responses ... 52

Chapter 9: Utilities .. 53

9.1 VistaKernelHash ... 53

9.2 XmlUtilities... 53

9.2.1 XmlUtilities Class .. 53

9.2.2 Sample Code .. 54

9.3 AuditTimer.. 55

Chapter 10: Exceptions.. 57

10.1 Checked and Unchecked Exceptions .. 57

10.2 Catching Exceptions ... 57

10.3 VistALink Exception Hierarchy ... 59

10.4 JAAS Exceptions .. 60

October 2003 Developer / System Manager Manual v
VistALink Version 1.0

Contents

10.5 J2EE Connectors Exceptions .. 60

10.5.1 VistaLinkResourceException .. 60

10.5.2 FoundationsException ... 60

10.5.3 VistaLinkFaultException... 60

10.5.4 Common Exception Interface.. 61

10.5.5 Exception Nesting ... 61

10.6 Working With Nested Exceptions .. 62

10.6.1 ExceptionUtils ... 62

10.6.2 ExceptionUtils:: getFullStackTrace(Throwable e) .. 63

10.6.3 ExceptionUtils:: getNestedExceptionByClass().. 63

Appendix – Java and M-Side Request / Response Processing .. 64

Java-Side VistALink Request / Response Processing .. 64

Message Types Supported By VistALink... 65

M-Side VistALink Request / Response Processing.. 65

Index .. 68

vi Developer / System Manager Manual October 2003
VistALink Version 1.0

Figures

Figures
Figure 1: RPC VistALink Connection Diagnostic Program .. 10
Figure 2: Access / Verify Code Entry .. 11
Figure 3: Get RPC List ... 11
Figure 4: User Information... 12
Figure 5: Foundations Manager Interface – Cache Systems .. 16
Figure 6: Automatically Starting Listener(s) Upon TaskMan Restart.. 18
Figure 7: Foundations Manager Interface – DSM / VMS Systems.. 21

October 2003 Developer / System Manager Manual vii
VistALink Version 1.0

Tables

Tables
Table 1: VistALink Developer / System Manager Manual Revision History .. i
Table 2: Common VistALink Terms ... x
Table 3: Listener Configuration Entries Description Table ... 17
Table 4: Foundations/VistALink Site Parameter Entries for Cache Systems...................................... 20
Table 5: Foundations/VistALink Site Parameter Entries – Cache Systems Description(s)................. 29
Table 6: Methods Description.. 54
Table 7: Final Variables Description ... 54
Table 8: Request Handler Summary .. 65

viii Developer / System Manager Manual October 2003
VistALink Version 1.0

Using This Manual

Using This Manual
This manual offers advice and instructions regarding the use of VistALink and the functionality it
provides for Veterans Health Information Systems and Technology Architecture (VistA) as a whole.

• Descriptive text is presented in a proportional font (as represented by this font).

• "Snapshots" of computer online displays (i.e., roll-and-scroll screen captures/dialogs) and
computer source code are shown in a non-proportional font and enclosed within a box. Also
included are Graphical User Interface (GUI) Microsoft Windows images (i.e., dialogs or
forms).

 User responses to online prompts will be boldface type.

 The word "Enter" in snapshots further prompts the user to press the Enter or Return
key on their keyboard.

 Author comments are displayed in italics or as "callout" boxes.

Callout boxes refer to labels or descriptions usually enclosed within a box,
which point to specific areas of a displayed image.

Common Terms

The terms and their descriptions in Table 2, below, may be helpful while reading this manual.

Term Description
Adapter / Connector Exemplified by the Java 2 Platform, Enterprise Edition

(J2EE) Connector Architecture (J2EE Connectors for
short), this represents a uniform way to integrate J2EE
application servers with Enterprise Information Systems
(EIS).

Authentication Verifying the identity of the end-user.

Authorization Checking the permissions of a user to allow or disallow
the performance of some function.

Classpath Where Java classes must be in order for the JVM to load
them. See JVM definition below.

Client A single term used interchangeably to refer the client
workstation (i.e., PC), and the client portion of the
program that runs on the workstation.

J2EE Java 2 Platform, Enterprise Edition. For more relevant
detail, see the above definition for Adapter / Connector.

J2SE Java 2 Standard Edition. The blueprint for building Java
applications.

JAAS Java Authentication and Authorization Service. This Java
package enables services to authenticate and enforce
access controls upon users.

JAR Java Archive. A file format based on the popular ZIP file
format, used for aggregating many files into one.

October 2003 Developer / System Manager Manual ix
VistALink Version 1.0

Using This Manual

JAVA An object-oriented language similar to C++, but
simplified to eliminate language features that cause
common programming errors.

JRE Java Runtime Environment, also known as Java
Runtime, is part of the Java Development Kit (JDK), a
set of programming tools for developing Java
applications.

JVM Java Virtual Machine. It interprets compiled Java binary
code (called bytecode) for a computer's processor (or
"hardware platform") so that the computer can perform a
Java program's instructions.

M Server The computer where MUMPS or M data and Remote
Procedure Calls (RPCs) reside.

Table 2: Common VistALink Terms

How to Obtain Technical Information Online

Methods of obtaining specific technical information online will be indicated in this manual
(where applicable) under the appropriate topic.

Assumptions About the Reader
This manual is written with the assumption that readers have experience with the following:

• VistA computing environment (e.g., Kernel Installation and Distribution System
[KIDS])

• VA FileMan data structures and terminology

• Microsoft Windows

• Java development environment

• M programming language

• Java programming language

This manual makes no attempt to explain how the overall VistA programming system is integrated
and maintained. Such methods and procedures are documented elsewhere. We suggest you look at the
various VA home pages on the World Wide Web (WWW) for a general orientation to VistA. For
example, go to the System Design & Development (SD&D) Home Page at the following web
address:

http://vista.med.va.gov/

x Developer / System Manager Manual October 2003
VistALink Version 1.0

http://vista.med.va.gov/

Using This Manual

Reference Materials
Readers who wish to learn more about VistALink should consult the following:

• VistALink Installation Guide, available at http://www.va.gov/vdl/.

• VistALink Technical Manual and Package Security Guide, also available at
http://www.va.gov/vdl/.

• http://vista.med.va.gov/migration/foundations/Foundindex.htm

The Foundations page (available at the URL above) provides announcements, additional information
(e.g., Frequently Asked Questions [FAQs] or advisories), documentation links, archives of older
documentation and software downloads.

VistALink documentation is made available online, on paper and in Adobe Acrobat Portable
Document Format (.PDF). A .PDF must be read using the Adobe Acrobat Reader
(i.e., ACROREAD.EXE), which is freely distributed by Adobe Systems Incorporated at the following
URL or Web address:

http://www.adobe.com/

For more information on the use of the Adobe Acrobat Reader, please refer to the "Adobe
Acrobat Quick Guide," also available at the Adobe URL above.:

DISCLAIMER: The appearance of external hyperlink references in this manual does not
constitute endorsement by the Department of Veterans Health Administration (VHA) of
this Web site or the information, products or services contained therein. The VHA does
not exercise any editorial control over the information you may find at these locations.
Such links are provided and are consistent with the stated purpose of this VHA Intranet
Service.

October 2003 Developer / System Manager Manual xi
VistALink Version 1.0

http://www.va.gov/vdl/
http://www.va.gov/vdl/
http://vista.med.va.gov/migration/foundations/Foundindex.htm
http://www.adobe.com/

 Introduction

Introduction

This guide defines one of the three (3) VistALink v1.0 documentation deliverables:

1. Installation Guide
2. Developer / System Manager Manual
3. Technical Manual and Package Security Guide

The VistALink Installation Guide details all the steps required for setting up the VistALink M
software components. The VistALink Developer / System Manager Manual gives nationwide
VHA application modernization teams background information and specific instructions focused
on VistALink as a tool. For questions concerning the architecture and construction of VistALink,
the VistALink Technical Manual and Package Security Guide provides qualified answers, as
well as foundational information. Together, these three publications document the current state
of VistALink and anticipate upcoming development.

Background Information. VistALink is a transport layer that allows Java to communicate with
M remote procedures. VistALink is completely based on standard technologies, both on the Java
and M side.

Architectural Scope. VistALink v1.0 is designed to work with a standalone J2SE application.
VistALink will be used by other VistA rehosting projects as a transport layer between Java and
M. VistALink implements the J2EE Connector Architecture 1.0 standard – v1.0 of VistALink
implements only the non-managed (i.e., outside of a J2EE container) version of the J2EE
Connectors.

Functionality Scope. VistALink v1.0 provides:

a. Communication capabilities for an M application request from a client J2SE Java

application

b. An authenticated communication transport layer from Java to M

c. End-user authentication within Java applications based on M user accounts (J2SE only)

d. Calling RPCs in a secure environment

VistALink FAQs.

For general or frequently asked questions (FAQs) about VistALink, please refer to the following
web site:

http://vista.med.va.gov/migration/foundations/FAQ.htm

xii Developer / System Manager Manual October 2003
VistALink Version 1.0

http://vista.med.va.gov/migration/foundations/FAQ.htm

Installing VistALink on a Developer Workstation

Part I – Development Workstation and Sample
Application Installation

Chapter 1: Installing VistALink on a Developer Workstation

1.1. Overview
This version of VistALink is designed for the J2SE development environment and intended for Java
client to M server development. VistALink libraries can be used from within any Java-compatible,
Integrated Development Environment (IDE). Examples of Java-compatible IDEs include Eclipse and
JDeveloper.

1.2. Installation
1.2.1. Distribution Structure
The VistALink distribution Zip file holds the directories and files detailed below.

<root> Contains the Readme.txt and ReleaseNotes
allSrc All VistALink source code
doc VistALink v1.0 manuals
jars VistALink Java Archive (JAR) library files
javadoc API documentation in “javadoc” format
m KIDS distribution for the M server routines
samples Source code for the sample application

1.2.2. Installation Instructions
To install VistALink on a developer workstation for development use:

1. Unzip the VistALink distribution Zip file on your workstation.

2. Add the JAR files below to the Java classpath for each development project with which you
are using VistALink.

• vljConnector_1.0.jar
• vljFoundationsLib_1.0.jar
• vljSecurity_1.0.jar

JAR file version numbers may vary depending on the VistALink distribution version number.

3. Obtain, load on your system and add the supporting libraries required by VistALink, as
detailed in the next subsection.

October 2003 Developer / System Manager Manual 1
VistALink Version 1.0

 Installing VistALink on a Developer Workstation

1.2.3. Supporting Libraries Required by VistALink
Developing applications with VistALink requires that some supporting libraries be in your classpath.
These libraries are:

• jaxen-full.jar (source: JAXEN project, version 1.0-FCS,
http://prdownloads.sourceforge.net/jaxen/jaxen-1.0-FCS.zip?download

• saxpath.jar (source: JAXEN project, version 1.0-FCS)
• j2ee.jar (source: Sun Microsystems, version 1.3.1, http://java.sun.com/j2ee/sdk_1.3/)
• JAXP-compliant XML parser and XSLT transformer, such as xerces.jar and xalan.jar

(please see the JAXP specification for more details)
• log4j.jar (source: log4j apache logging framework, available at

http://jakarta.apache.org/log4j

Note: To obtain the j2ee.jar library file, it is necessary to install the complete J2EE version 1.3 SDK
on your machine. Once you do that, get the j2ee.jar file from the "lib" subdirectory of the directory
you installed the J2EE 1.3 SDK in. Save this file to the location where you are keeping the other
supporting libraries (for example), and then you can de-install the J2EE 1.3 SDK.

1.2.4. Java Classpath Considerations
When setting up any given application, the libraries (jar files), classes, configuration files and other
resources used by an application need to be on the application's java classpath. There are a number of
ways to set the java classpath for an application, including:

• IDE project-specific classpath
• CLASSPATH environment variable (Windows), workstation-wide scope
• CLASSPATH environment variable (Windows), set within a batch file, scope of the batch

file/command window execution only
• -classpath (or –cp) command line argument to the Java Virtual Machine

For more information about Java's classpath and how to set it, please see:

• Setting the class path, Sun Microsystems, Inc.,
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/classpath.html

1.2.5. Additional Installation References
For complete instructions on installing the VistALink package for the M server side, see the
VistALink Installation Guide. Chapter 2 of the Installation Guide includes the VistALink IRM
Preparation and Installation Checklist, created to assist IRM programmers with the installation of
VistALink v1.0 and the testing of the sample Java applications.

1.3. Public VistALink APIs Documented in Javadoc
Included in the VistALink distribution is standard "Javadoc" API documentation for the various Java
classes that make up the public VistALink programming API. The VistALink classes documented in
the VistALink Javadoc comprise VistALink's public APIs. These APIs may be used under the
conditions listed in the Javadoc documentation.

2 Developer / System Manager Manual October 2003
VistALink Version 1.0

http://prdownloads.sourceforge.net/jaxen/jaxen-1.0-FCS.zip?download
http://java.sun.com/j2ee/sdk_1.3/
http://jakarta.apache.org/log4j
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/classpath.html

 Installing VistALink on a Developer Workstation

Other VistALink classes not documented in the VistALink javadoc are not part of the supported
VistALink API.

To access this documentation:

1. Go to the location to which you unzipped the VistALink distribution on your workstation.

2. Go to the "javadoc" subdirectory.

3. Load "index.html" in your web browser.

For more information about the JavaDoc documentation format, please see
http://java.sun.com/j2se/javadoc/.

October 2003 Developer / System Manager Manual 3
VistALink Version 1.0

http://java.sun.com/j2se/javadoc/

Sample Applications

Chapter 2: Sample Applications

2.1 Overview
Three sample applications are supplied in vljSamples_1.0.jar, with the following class names:

• VistaLinkRpcSwingTester (full featured Swing-based listener testing application)
• VistaLinkRpcSwingSimple (simplified Swing-based development example)
• VistaLinkRpcConsole (a console-based application)

2.2 About Installing J2SE Applications
Running any Java 2 Standard Edition (J2SE) application consists first of:

• Installing the correct Java Runtime Environment (JRE)

• Having all supporting Java libraries available

• Setting up the actual application

• Setting up the application classpath

• Setting up any configuration files required by the application

Assumptions: These instructions are written from the point of view of setting up the sample
application on a Windows workstation. However, there is nothing about VistALink particularly tied
to the Windows client environment, as VistALink is a 100-percent pure Java application.

2.3 Set Up and Run the Sample Applications
2.3.1 JRE Setup
VistALink requires the 1.4.1 or higher J2SE Java Runtime Environment (JRE) or Java Development
Kit (JDK) to be installed on the client workstation.

2.3.2 Java Library Installation
VistALink requires certain supporting libraries to be available on the client workstation.

1) Download and install the 1.3.1 J2EE SDK (http://java.sun.com/j2ee/sdk_1.3/)

2) Create a directory to hold the Java libraries required for VistALink, (e.g.) c:\javalib.

3) Copy the following files to that directory:

• j2ee.jar (source: directory you installed the J2EE 1.3.1 runtime in)
• jaxen-full.jar (source: JAXEN, version 1.0-FCS,

http://prdownloads.sourceforge.net/jaxen/jaxen-1.0-FCS.zip?download)
• xerces.jar (source: xerces) Or other JAXP-compliant XML parser.

4 Developer / System Manager Manual October 2003
VistALink Version 1.0

Sample Applications

• saxpath.jar (source: JAXEN)
• log4j-1.2.7.jar (source: Log4J, http://jakarta.apache.org/log4j/docs/download.html -- higher

versions are OK, e.g., 1.2.8, which is what they have available now)

4) You can uninstall the 1.3.1 J2EE SDK now. You just needed the j2ee.jar file.

JDK 1.4 includes a default JAXP-compliant XML parser and an XSLT transformer. So, VistALink
should require no additional JAXP configuration to function on JDK 1.4. In case a need arises to
configure a JAXP XML parser or an XSLT transformer, follow the steps detailed in subsection 2.3.8
at the end of this chapter.

2.3.3 VistALink Library Installation
Copy the following files from the VistALink distribution to the same directory on the workstation, for
example, c:\javalib.

• vljConnector_1.0.jar
• vljFoundationsLib_1.0.jar
• vljSecurity_1.0.jar

2.3.4 Grant Yourself Kernel Access to the Sample Application
The Kernel "B"-type option “XOBV VISTALINK TESTER” was created as part of the M-side KIDS
install. To run the sample application, you will need to grant yourself access to the "XOBV
VISTALINK TESTER" on the M server to which you will be connecting (unless you already have
Kernel programmer access on the M server).

Note: For more information on granting yourself access to RPCs, please see the RPC Broker Systems
Manual at http://www.va.gov/vdl/.

2.3.5 Install the Sample Application Files
1) Create a directory, e.g., c:\Program Files\vistalink\samples, for the sample application.

2) Copy the contents of the \samples folder in the distribution file to c:\Program
Files\vistalink\samples.

2.3.6 Set Classpath and Java Locations and Run the Sample
Applications

Three batch files are supplied in the samples folder of the distribution, one to run each of the three
sample applications:

• runRpcConsole.bat (runs VistaLinkRpcConsole)
• runSwingSimple.bat (runs VistaLinkRpcSwingSimple)
• runSwingTester.bat (runs VistaLinkRpcSwingTester)

October 2003 Developer / System Manager Manual 5
VistALink Version 1.0

http://www.va.gov/vdl/

Sample Applications

In addition, a fourth batch file (setVistaLinkEnvironment.bat) is supplied that sets the classpath and
the location of the Java.exe executable to use on your workstation. This fourth batch file is called by
each of the three batch files noted in section 2.3.6 on the previous page. So to configure the classpath
and java executable location for your workstation, you need modify only this one file. The content of
this file, as distributed, is:

REM -- you will need to adjust the locations of the various jars and
REM other files to match the locations of these files on your
REM system.
REM
REM -- set the directory location containing java.exe executable
REM -- (don't include the \bin subdirectory)
set JAVA_HOME=c:\j2sdk1.4.1_02
REM -- if using a JRE, above might be more like (depending on version):
REM -- set JAVA_HOME=c:\program files\java\j2re1.4.1_02
REM
REM clear CLASSPATH and set CLASSPATH for J2EE
set CLASSPATH=c:\javalib\j2ee.jar
REM
REM -- path for JAXEN libraries
set CLASSPATH=%CLASSPATH%;c:\javalib\jaxen-full.jar
set CLASSPATH=%CLASSPATH%;c:\javalib\saxpath.jar
set CLASSPATH=%CLASSPATH%;c:\javalib\xerces.jar
REM
REM -- path for Log4J
set CLASSPATH=%CLASSPATH%;c:\javalib\log4j-1.2.8.jar
REM
REM -- paths for VistaLink (replace 1.0.0.101 with version #)
set CLASSPATH=%CLASSPATH%;c:\javalib\vljConnector_1.0.jar
set CLASSPATH=%CLASSPATH%;c:\javalib\vljFoundationsLib_1.0.jar
set CLASSPATH=%CLASSPATH%;c:\javalib\vljSecurity_1.0.jar
REM
REM -- path for VistaLink sample app (replace 1.0.0.101 with
version
REM #) -- (assumes the samples jar is in the current directory)
set CLASSPATH=%CLASSPATH%;./vljSamples_1.0.jar

So to run the sample applications:

1) Modify the jaas.config file supplied with the distribution's samples folder to have the settings
needed to connect to your M system.

Note: runRpcConsole.bat and runSwingSimple.bat are hard-coded to load a configuration named
DemoServer from the jaas.config file. Either modify the DemoServer configuration with the
settings needed for your M system, or, if you use a different configuration name, modify
runRpcConsole.bat and runSwingSimple.bat to use your configuration name (the -s parameter at
the end of the command line that launches the application.)

2) Modify the setVistaLinkEnvironment batch file to match the location of the java executable to
use on your workstation. You may have multiple Java Runtime Environments (JREs) or Java
Development Kits (JDKs) installed on your workstation. Choose which one to use (it should be
version 1.4.1 or higher).

6 Developer / System Manager Manual October 2003
VistALink Version 1.0

Sample Applications

In the setVistaLinkEnvironment.bat file, replace the setting for the JAVA_HOME environment
variable with the location to use on your system, e.g.:

REM -- set the directory location containing java.exe executable
REM -- (don't include the \bin subdirectory)
set JAVA_HOME=c:\j2sdk1.4.1_02

If you wish to verify that you have correctly modified the batch file, look in the bin directory of
the JAVA_HOME environment variable and use the java –version command to determine
what version of the JRE you are running. Use the example below as a guide.

C:\>CD\j2sdk1.4.1_02\jre\

C:\j2sdk1.4.1_02\jre>CD BIN

C:\j2sdk1.4.1_02\jre\bin>java -version

java version "1.4.2"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2-b28)
Java HotSpot(TM) Client VM (build 1.4.2-b28, mixed mode)

3) Modify the setVistaLinkEnvironment batch file to match the locations of the various
supporting library jar files needed to run the sample application. You need to specify the
locations of each of the J2EE, JAXEN, Log4J, and VistaLink library jar files. Each entry added
to the CLASSPATH variable needs to be modified to match the file name and location of the
corresponding library on your system, as you installed them above. For example:

REM clear CLASSPATH and set CLASSPATH for J2EE
set CLASSPATH=./j2ee.jar

4) runSwingTester.bat (the main sample application, designed to demonstrate VistALink
functionality and test server connectivity) can be run directly now. Launch the batch file by
double-clicking on it or run it in a command window. Check for errors in the command-window
output in case the application is unable to launch; if this happens, the most likely culprit is that
one of the locations set in the batch file is incorrect.

5) runSwingSimple.bat (a simpler Swing application that is a better "programming example"
program because it lacks the "bells and whistles" of SwingTester) passes a command line
parameter to specify which configuration in the jaas.config file should be used to connect to. You
should modify the default setting in the batch file if you are not connecting to the default
configuration (DemoServer).

6) runRpcConsole.bat is a console-only sample application. In addition to requiring a command-
line parameter to specify the JAAS configuration to connect to, is also dependent on passing an
access and verify code on the command line (unless the defaults embedded in the application
work; they probably will not). You can pass access and verify code in with additional -a and -v
command-line parameters.

October 2003 Developer / System Manager Manual 7
VistALink Version 1.0

Sample Applications

2.3.7 Optional: To Enable Log4J Logging:

1. Assume c:\Program Files\vistalink\samples is a current directory.

2. Folder c:\Program Files\vistalink\samples\props contains a sample log4jconfig.xml
configuration file with various log4j configuration options.

3. Each sample application will try to load log4j configuration from the file named
"props\log4jconfig.xml" relative to current directory. Therefore c:\Program
Files\vistalink\samples\props\log4jconfig.xml will be loaded.

4. The log4jconfig.xml file within the c:\Program Files\vistalink\samples\props\ folder contains

extensive information on various log4j configuration options. Look at this simple example of
a log4jconfig.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="myConsoleAppender1" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%-4r [%t] %-5p class %C method %M
line number %L category %c %x - %m%n"/>
 </layout>
 </appender>

 <root>
 <priority value ="info" />
 <appender-ref ref="myConsoleAppender1"/>
 </root>

</log4j:configuration>

5. When you run the sample application, you should see "logger" output for debug and error

information being displayed on the console window (the window in which you are starting up
the application).

Note: an example log4J properties file is provided in the “samples” folder in the distribution zip file.

2.3.8 Optional: JVM Command-Line Parameters – JAXP XML Parser
Implementations

VistALink allows you to use any JAXP-compatible XML parser. To enable this support, when you
launch an application that uses VistALink, you need to pass some command line parameters to the
Java Virtual Machine (JVM) setting some system properties. Those system properties are:

• javax.xml.parsers.SAXParserFactory
• javax.xml.parsers.DocumentBuilderFactory
• javax.xml.transform.TransformerFactory

8 Developer / System Manager Manual October 2003
VistALink Version 1.0

Sample Applications

For example, if you use Xerces as your XML parser and Xalan as your XSLT processor, you would
pass the following system properties to the JVM using the -D command line options:

java myapp -Djavax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl \
-Djavax.xml.parsers.DocumentBuilderFactory=org.apache.xerces.jaxp.DocumentBuilderFactoryImpl \
-Djavax.xml.transform.TransformerFactory=org.apache.xalan.xsltc.trax.SmartTransformerFactoryImpl

By default, the sample application will use the Xerces as the XML parser and Xalan as the XSLT
processor.

October 2003 Developer / System Manager Manual 9
VistALink Version 1.0

Testing the Listener

Chapter 3: Testing the Listener

3.1 Using the Swing Sample Application
This version of VistALink includes a diagnostic tool for the client workstation (Figure 1, below).

Note: The instructions for installing this tool appear in the previous chapter.

Figure 1: RPC VistALink Connection Diagnostic Program

This tool can be used to verify and test the VistALink client/server connection and signon process.
Use the instructions beginning on the next page to work with this tool.

10 Developer / System Manager Manual October 2003
VistALink Version 1.0

 Testing the Listener

1. Click Connect on the Access / Verify Code interface shown in Figure 1. The interface shown
in Figure 2, below, will display.

Figure 2: Access / Verify Code Entry

2. Enter the Access / Verify code pair you have been assigned. Click OK. An interface with multiple

tabs will display. Click on the RPC List tab. Type “X” in the Enter namespace box. Then click
Get RPC List to display the information in Figure 3, below.

Figure 3: Get RPC List

October 2003 Developer / System Manager Manual 11
VistALink Version 1.0

Testing the Listener

You can also use the Diagnostic Program to obtain user information.

1. Click on the User Info tab in the interface shown in Figure 4, below.

Figure 4: User Information

2. Click Get user information to display your User data.

3.2 Verifying and Testing the Listener Network Connection

To detect and avoid network problems, do the following:

1. First, make sure you can reach the M server you are trying to connect to through TCP.

At the DOS/Command prompt type PING nnn.nnn.nnn.nnn to the M server to which you are
trying to connect (where nnn.nnn.nnn.nnn equals the IP address of the server). For example:

C:\> PING 127.0.0.1 <RET>

"PINGing" is a way to test connectivity. PINGing sends an Internet Control Message
Protocol (ICMP) packet to the server in question and requests a response. It verifies that
the server is running and the network is properly configured.

Note: If the M server is unreachable, there is a network problem and you should consult with your
network administrator.

12 Developer / System Manager Manual October 2003
VistALink Version 1.0

 Testing the Listener

2. Verify that the listener port the workstation is connecting to is in fact a VistALink listener
(and not, for example, a port on which an RPC Broker listener is running). .

3. Telnet from your workstation to the IP address and port of the VistALink listener. On most

workstations you can do this simply by entering "telnet ipaddress port" in a command
window, e.g.:

c:\> telnet 10.21.1.85 8000 <RET>

When you connect, press <RET>. If a VistALink listener is running on that port, you should
see echoed something similar to:

<?xml version="1.0" encoding="utf-8" ?><VistaLink messageType="gov
.va.med.foundations.vistalink.system.fault" version="1.0" xmlns:xs
i="http://www.w3.org/2001/XMLSchema-instance"xsi:noNamespaceSchema
Location="vlFault.xsd"><Fault><FaultCode>Server</FaultCode><FaultS
tring>System Error</FaultString><FaultActor></FaultActor><Detail><
Error type="system" code="181001" ><Message><![CDATA[A system erro
r occurred in M:<SUBSCRIPT>SETMSG+5^XOBVRH]]></Message></Error></D
etail></Fault></VistaLink>

Although there is an error message echoed in this display, the error is due to the fact that we
are connecting from telnet rather than from a VistALink client. If an XML message similar to
the above is echoed back, then the network connection between your workstation and the
VistALink listener at the requested IP address and port is valid, and the problem may lie in
the client application configuration, the Java Runtime Environment (JRE), installation, etc.

If you cannot make the telnet connection, there may be a problem somewhere in the network /
firewall / machine TCP configuration.

3.3 Troubleshooting
If you continue to experience problems in testing the listener, examine the areas detailed in the
subsections below.

3.3.1 JRE Version
While VistALink requires a Java Runtime Environment (JRE) version of 1.4.1 or greater (when used
on a client workstation), the application using VistALink will have its own specific JRE requirements
as well; either an equal or higher version than what is needed by VistALink. The driving factor for the
JRE that needs to be on the client workstation is the application itself, not the VistALink libraries.

There may be multiple JREs installed on a particular workstation. In this case, you may need to
determine which one is being used when you launch the application you are troubleshooting. You
may need to look at the shortcut used to launch the application to see if a specific JRE path is
specified in an explicit "java" command. You may also need to see if a default JRE is launched when
the java command is executed on the workstation (try executing "java -version" in a directory location
that does not itself contain the JRE.)

October 2003 Developer / System Manager Manual 13
VistALink Version 1.0

Testing the Listener

3.3.2 Determining If VistALink Libraries Are Installed on the Client

Workstation
If you are examining an application's installation on a client workstation, and want to know if the
VistALink libraries are present, look in whatever location a given application places libraries, for the
following files:

• vljConnector_x.x.jar
• vljFoundations_x.x.jar
• vljSecurity_x.x.jar

Note: "x.x" is a version number, e.g., 1.0

Different applications may have different versions of libraries (such as VistALink) installed for their
own use. This is not necessarily a problem on the client workstation; unlike DLLs, there is no
requirement to register java libraries in a system registry. Instead, each application sets its own
classpath, and only libraries within an application's specified classpath are loaded by the application.
This allows applications with different library version dependencies to co-exist on the same
workstation without resulting in a “DLL Hell” situation.

Note: “DLL Hell” is a phrase commonly used in a Windows operations environment.

14 Developer / System Manager Manual October 2003
VistALink Version 1.0

Managing the Listener

Part II – Site Management

Chapter 4: Managing the Listener

4.1 Overview
The VistALink TCP listener runs on the M server (although not necessarily in M). Its purpose is to
listen on a particular TCP port, accept incoming client connections and spawn off handler jobs to
service those connection requests.

4.1.1 VistALink Listeners and Ports

VistALink offers the following listener / Port / IP address possibilities:

• A single VistALink listener, running on any available port.

• Multiple VistALink listeners running on the same IP address/CPU, but listening on different
ports.

To run one listener in a Production account and another in a Test account on the same IP
address/CPU, you must configure them to listen on different ports (e.g., 8000 for Production and
8001 for Test). If, on the other hand, you are running the listeners on different IP addresses/CPUs, the
ports can be the same (e.g., one VistALink listener on every system, listening on port 8000).

While Port 8000 is suggested here, any available port number may be assigned. The listener port, however,
must match the port and IP address you specify in the JAAS configurations you set up for your clients.

4.1.2 Differences Between Cache and DSM / VMS
Starting and stopping listeners is different on Cache systems than on DSM/VMS systems.

Cache: For Cache systems, listener processes are configured, started and stopped entirely within the
M environment. The Foundations Management menu provides several ListMan actions to do this;
these particular actions are enabled on Cache systems only.

DSM for OpenVMS: Multi-threaded listeners are externally implemented through the TCP/IP
Service for OpenVMS (previously known as UCX). The TCP/IP Service permits multiple TCP/IP
clients to connect and run as concurrent processes, up to the limits established by the system. TCP/IP
listens on a particular port, and launches a specified VistALink handler process for each client
connection. Configuring, starting and stopping listeners is managed entirely through the VMS TCP/IP
Service.

October 2003 Developer / System Manager Manual 15
VistALink Version 1.0

Managing the Listener

4.2 Listener Management for Cache NT and Cache VMS
Systems

Access the VistALink system managers’ option (XOBU SITE SETUP MENU) using the Operations
Management menu, which is available via the Foundations Manager interface (Figure 5, below).
This option is a ListMan application; for Cache systems, it includes the following executable actions:

SP Site Parameters SL Start Listener
CFG Manage Configurations STP Stop Listener
RE Refresh SB Start Box
SS System Status CU Clean Up Log

Figure 5: Foundations Manager Interface – Cache Systems

Note: The CFG, SL, STP, SB and CU executable actions are not available on DSM systems.

16 Developer / System Manager Manual October 2003
VistALink Version 1.0

Managing the Listener

4.2.1 Creating / Editing Listener Configurations

To create or edit listener configuration entries, use the “Manage Configurations” action. The Manage
Configurations action first prompts you to select a configuration entry. Then, within the entry, you
can configure one or more listeners, as indicated below:

Select VistALink LISTENER CONFIGURATION NAME: DEFAULT

NAME: DEFAULT// <Enter>
Select PORT: 8000// <Enter>
 PORT: 8000// <Enter>
 STARTUP: YES// <Enter>

Table 3, below, defines the site parameter fields for a given listener entry.

Field Meaning

Name This field contains the name of the default VistALink configuration used
with the associated BOX-VOLUME PAIR specified in the
FOUNDATIONS SITE PARAMETERS file (#18.01).

Port The port the listener will listen on.

Startup If the listener should be started when this configuration is started. Set this
field to YES. Otherwise, set to NO. (If you want to keep the port in the
configuration but temporarily want to not start a listener, you would set
field to NO.)

Table 3: Listener Configuration Entries Description Table

4.2.2 To Start All Configured Listeners

To start all listeners (i.e., those configured in the FOUNDATIONS SITE PARAMETERS file to
automatically start), use the "Start Box" action shown in Figure 5 on page 16. This action will start
all listeners for the configuration assigned to the current BOX-VOLUME pair.

Note: To configure listeners for automatic startup, please refer to subsection 4.2.1, “Creating / Editing
Listener Configurations.”

4.2.3 To Start a Single Unconfigured Listener
To start a listener, use the "Start Listener" (SL) action on the Foundations Manager interface and
enter the desired port. The action will first check to see if a listener is already listening on the port. If
this is true then you will be informed. No damage to the system will occur.

4.2.4 TO Stop a Configured or Unconfigured Listener
To stop a running listener, use the "Stop Listener" (STP) action and select the desired listener.

Note: The “Stop Listener” action may take up to 60 seconds to actually stop the listener.

October 2003 Developer / System Manager Manual 17
VistALink Version 1.0

Managing the Listener

4.2.5 How to Schedule Listener Startup at System Startup

The XOBV LISTENER STARTUP option, which starts all VistALink listener configuration
operations at one time for the BOX-VOLUME, can be tasked to automatically start all required
listener processes upon TaskMan start-up. Examples of when this type of start-up would be required
might be after rebooting the system or restarting the configuration.

As part of the VistALink installation for Cache systems, this option should already be
scheduled to run at startup.

To automatically start the listeners(s) when TaskMan is restarted, enter the XOBV LISTENER
STARTUP option in the OPTION SCHEDULING file (#19.2). Schedule this option with SPECIAL
QUEUING set to STARTUP.

You can enter and schedule the required options by using “TaskMan Schedule/Unschedule Options,”
as shown in Figure 6, below.

Select Systems Manager Menu Option: TASKMAN Management

Select Taskman Management Option: SCHedule/Unschedule Options

Select OPTION to schedule or reschedule: XOBV LISTENER STARTUP <Enter> Start
VistaLink Listener Configuration
 ...OK? Yes// <Enter> (Yes)

 Edit Option Schedule
 Option Name: XOBV LISTENER STARTUP
 Menu Text: Start VistaLink Listener Configu TASK ID:
__

 QUEUED TO RUN AT WHAT TIME:

DEVICE FOR QUEUED JOB OUTPUT:

 QUEUED TO RUN ON VOLUME SET:

 RESCHEDULING FREQUENCY:

 TASK PARAMETERS:

 SPECIAL QUEUEING: STARTUP

__

Figure 6: Automatically Starting Listener(s) Upon TaskMan Restart

18 Developer / System Manager Manual October 2003
VistALink Version 1.0

Managing the Listener

4.2.6 Working With the Foundation Site Parameters File

Note: This file is required for both Cache and DSM.

The FOUNDATIONS SITE PARAMETERS file (#18.01) contains one entry – the .01 field is a
pointer to the DOMAIN file (#4.2). When VistALink is installed, the install process creates this entry
and assigns the proper Domain Name using the Domain.

The site parameters in this top-level entry pertain to Foundations and VistALink. Currently, all the
parameters in this file related to VistALink and listener configuration. As more Foundations tools are
introduced, other non-VistALink related parameters would be added.

For each set of listeners that you plan to run on your system, you should make an entry in the
VistALink LISTENER CONFIGURATION file and add listeners to the configuration. After adding a
listener configuration, associate that configuration with any BOX-VOLUME where this configuration
is appropriate.

As part of the VistALink installation for Cache systems, a listener configuration named
'DEFAULT' was created for port 8000.

4.2.7 Editing Site Parameters

To edit VistALink related site parameters, use the Site Parameters action.

HEARTBEAT RATE: 180// <Enter>
LATENCY DELTA: 180// <Enter>

Note: The following portion of the dialog is not presented to a DSM system user.

Select BOX-VOLUME PAIR: ROU:CACHE//
 BOX-VOLUME PAIR: ROU:CACHE// <Enter>
 DEFAULT CONFIGURATION: DEFAULT// <Enter>
Select BOX-VOLUME PAIR:

As part of this action, you are asked to select a Box-Volume Pair entry. Then, within each Box-
Volume Pair entry (representing the volume set and system on which the listener should run), you can
set the default listener configuration that should automatically be started as part of the execution of
the XOBV LISTENER STARTUP option. Also, the Start Box action uses this default listener
configuration.

October 2003 Developer / System Manager Manual 19
VistALink Version 1.0

Managing the Listener

Table 4, below, defines the Foundations site parameter fields.

Field Meaning

Heartbeat Rate This field indicates the rate (in seconds) of the VistALink heartbeat
message originating from a client. If there is no activity on the connection
for this amount of time, the client will send a system heartbeat message.

The client, as part of the initial connection protocol, retrieves this value.
As a result, the client and the M server are always synchronized
regarding the heartbeat rate.

Latency Delta This field indicates the number of seconds to add to the HEARTBEAT
RATE when calculating the initial timeout value for the VistALink listener.

The client and the M server are synchronized regarding the
HEARTBEAT RATE. This latency parameter allows the site to fine tune
the timeout value. The site can to take into account any network
slowness or other factors that may delay the arrival of the system
heartbeat message from the client.

Box-Volume Pair This field indicates the BOX-VOLUME pair for the entry.

The XOBV LISTENER STARTUP option uses this field to find the
configuration that should be used to startup VistALink listeners for the
BOX-VOLUME pair.

Note: This information is not presented to a DSM system user.

Default Configuration This field indicates the default startup listener configuration for the BOX-
VOLUME PAIR entry.

The XOBV LISTENER STARTUP option uses this field to retrieve the
correct listener configuration from the VistALink LISTENER
CONFIGURATIONS (#18.03) file.

The information in the configuration is then used to startup the indicated
VistALink listeners on the desired ports.

Note: This information is not presented to a DSM system user.

Table 4: Foundations/VistALink Site Parameter Entries for Cache Systems

20 Developer / System Manager Manual October 2003
VistALink Version 1.0

Managing the Listener

4.3 Listener Management for DSM / VMS Systems

Access the VistALink system managers’ option (XOBU SITE SETUP MENU) using the Operations
Management menu, which is available via the Foundations Manager interface (Figure 7, below).
This option is a ListMan application; for DSM / VMS systems, it includes the following executable
actions:

SP Site Parameters
RE Refresh
SS System Status

Figure 7: Foundations Manager Interface – DSM / VMS Systems

Note: Parentheses around a displayed executable action [e.g. (Start Listener)] indicate that the action is
disabled, or unavailable to the user.

Using DSM for OpenVMS, multi-threaded listeners are externally implemented through the TCP/IP
Service for OpenVMS (previously known as UCX). The TCP/IP Service permits multiple TCP/IP
clients to connect and run as concurrent processes, up to the limits established by the system. TCP/IP
listens on a particular port, and launches a specified VistALink handler process for each client
connection.

October 2003 Developer / System Manager Manual 21
VistALink Version 1.0

Managing the Listener

For the TCP/IP VistALink handler process, you need to create:

• An OpenVMS account
• A home directory
• A DCL (Digital Command Language) login command procedure

An example is used throughout this section. For this example the following names are used:

• The OpenVMS VistALink handler account name for the TCP/IP Service is VLINK
• The home directory is [VLINK]
• The DCL login command procedure is named VLINK.COM

4.3.1 Setting Up An OpenVMS User Account

The easiest way to configure an OpenVMS account to be a VistALink handler is to copy most of the
parameters from VA MailMan TCP account. To do this:

1. Determine an unused User Identification Code (UIC), typically in the same group as other DSM

for OpenVMS accounts.

2. Using the OpenVMS Authorize utility, copy the XMINET account to a new VLINK account with
the unused UIC. You must have SYSPRV to do this.

Make sure that the account settings for the new VLINK account are the same as in the following
example, or, if they are different, that the impact of the different settings is acceptable for your
system. In particular, make sure that the DisCtlY, Restricted and Captive flags are set for security
reasons.

4.3.2 Setting Up A Home Directory for the VistALink Handler Account

You need to create a home directory for the VistALink handler account. This directory will house the
DCL command procedure that is executed whenever a client connects, as well as log files. Make sure
that the owner of the directory is the VLINK account.

For example, to create a home directory named [VLINK] with ownership of VLINK:

$ CREATE/DIR [VLINK]/OWNER=VLINK

Creating a DCL Login Command Procedure for the VistALink Handler

Create a DCL command procedure in the home directory for the handler account. Make sure the
command procedure file is owned by the VistALink handler account.

1. Adjust the DSM command line (environment, UCI and volume set) for your system.

2. If access control is enabled, ensure that the VLINK account has access to this UCI,
volume set and routine (see "Access Control List (ACL) Issues", later in this
chapter).

22 Developer / System Manager Manual October 2003
VistALink Version 1.0

Managing the Listener

Sample DCL Login Command Procedure

$!VLINK.COM - for incoming connect requests
$!---
$set noon !Don't stop
$ set noverify !change as needed
$! set verify !change as needed
$! WAIT 00:00:00
$ purge/keep=10 sys$login:VLINK*.log !Purge log files only
$! set proc/priv=(share) !May not be required for MBX device
$ x=f$trnlnm("sys$net") !This is our MBX device
$
$ write sys$output "Opening "+x !This can be viewed in the log file
$! Check status of the BG device before going to DSM
$ cnt=0
$ CHECK:
$ stat=f$getdvi("''x'","STS")
$ if cnt .eq. 10
$ then
$ write sys$output "Could not open "+ x
$ goto EXIT
$ else
$ if stat .ne. 16
$ then
$ cnt = cnt + 1
$ write sys$output "''cnt'> ''x' not ready!"
$ wait 00:00:01 !Wait one second to assure connection
$ goto CHECK
$ else
$ SET NOVERIFY
$!--
$ dsm/env=DSMMANAG /uci=VAH /vol=ROU UCX^XOBVTCP
$!--
$ endif
$ endif
$ EXIT:
$ logout/FULL

Note: In this sample procedure, ‘environ,’ ‘uci’ and ‘vol’ are site-specific.

It is possible to run different TCP/IP Service listener processes on multiple nodes. It is not necessary to
do this; however, depending on your site configuration and needs, you may find a need to do so.

The steps to set up a TCP/IP Service for VistALink are:

1. Determine the part

2. Set up the "VLINK" TCP/IP Service

3. Enable and save the "VLINK" TCP/IP Service

October 2003 Developer / System Manager Manual 23
VistALink Version 1.0

Managing the Listener

4.3.3 Setting Up and Enabling the TCP/IP Service

Once you create the VistALink handler, create the TCP/IP Service to listen for connections and
launch the VistALink handler. You need to choose:

• The OpenVMS node to run the listener on. Choose the node that you want to run the
resulting M jobs on to process incoming VistALink messages. This is also the node
whose IP address will be advertised to other systems as the location of your
VistALink listener.

• The port it should listen on.

• The user account and command file name to invoke when a connection is received.

Prior to setting TCP/IP up in production, you can set up a "test" TCP/IP Service that logs into an M
test account for testing. The "test" TCP/IP Service can use the same OpenVMS account and directory
as the production TCP/IP Service. Just create a different DCL command file with the UCI and volume
set of the test account.

4.3.3.1 Obtaining an Available Listener Port (for Alpha / VMS systems
only)

Port selections conflict only if another process on the same system is using the same port. To list the
ports currently in use on OpenVMS systems, use the DCL command:

$ TCPIP SHOW DEVICE_SOCKET
Port Remote

Device_socket Type Local Remote Service Host

 bg3 STREAM 8001 0 VistALink 0.0.0.0
 bg23 STREAM 9700 0 Z3ZTEST 0.0.0.0
 bg24 STREAM 9600 0 ZSDPROTO 0.0.0.0

For example, if 8000 shows up in the Local Port column, some other application is already using this
port number; choose another port.

24 Developer / System Manager Manual October 2003
VistALink Version 1.0

Managing the Listener

4.3.4 Creating the Service

Since the TCP/IP Service is node specific, make sure you are on the same node that you
want the listener to run on.

$TCPIP
TCPIP> SET SERVICE VLINK/USER=VLINK/PROC=VLINK /PORT=8000-
_TCPIP> /PROTOCOL=TCP/REJECT=MESSAGE="All channels busy" -
_TCPIP> /LIMIT=50/FILE=SYS$SYSDEVICE:[VLINK]VLINK.COM

TCPIP> SHO SERVICE VLINK/FULL

Service: VLINK
 State: Disabled
Port: 8000 Protocol: TCP Address: 0.0.0.0
 User_name: not defined Process: VLINK

Enabling and Saving the Service

Since TCP/IP is node specific, make sure you are on the same node that you want the
listener to run on.

TCPIP> ENABLE SERVICE VLINK (enable service immediately)
TCPIP> SET CONFIG ENABLE SERVICE VLINK (save service for reboot)
TCPIP> SHO SERVICE/FULL VLINK

Service: VLINK
 State: Enabled
Port: 8000 Protocol: TCP Address: 0.0.0.0
Inactivity: 5 User_name: VLINK Process: VLINK
Limit: 50 Active: 0 Peak: 0

File: SYS$SYSDEVICE:[VLINK]VLINK.COM
Flags: Listen

Socket Opts: Rcheck Scheck
 Receive: 0 Send: 0

Log Opts: None
 File: not defined

Security
 Reject msg: All channels busy

 Accept host: 0.0.0.0
 Accept netw: 0.0.0.0
TCPIP> SHO CONFIG ENABLE SERVICE

Enable service
 FTP, FTP_CLIENT, VLINK, MPI, TELNET, XMINETMM
TCPIP> EXIT

Note: To test the connection, refer to Chapter 3, “Testing the Listener.”

October 2003 Developer / System Manager Manual 25
VistALink Version 1.0

Managing the Listener

4.3.5 Access Control List (ACL) Issues
Some sites use DSM's ACL feature, which controls access explicitly to each OpenVMS account that
needs to enter that DSM environment. If your site is using ACL, you should set up the VLINK
account with PROGRAMMER access, and then specify the Volume set and UCI name that the
VLINK user account has authorization to access. Ensure that the OpenVMS VLINK account
prohibits Batch, Local, Dialup and Remote logins, allowing only Network logins.

An example of setting this level of access for an VLINK account is provided below:

$ DSM /MAN ^ACL

Environment Access Utilities

 1. ADD/MODIFY USER (ADD^ACL)
 2. DELETE USER (DELETE^ACL)
 3. MODIFY ACTIVE AUTHORIZATIONS (^ACLSET)
 4. PRINT AUTHORIZED USERS (PRINT^ACL)

Select Option > 1 ADD/MODIFY USER

OpenVMS User Name: > VLINK

ACCESS MODE VOL UCI ROUTINE
----------- --- --- -------

No access rights for this user.

Access Mode ([M]ANAGER, [P]ROGRAMMER, or [A]PPLICATION): > P
Volume set name: > VAH
UCI: > ROU
UCI: > <RET>
Volume set name: > <RET>
Access Mode ([M]ANAGER, [P]ROGRAMMER, or [A]PPLICATION): > <RET>

USER ACCESS MODE VOL UCI ROUTINE
---- ----------- --- --- -------

VLINK PROGRAMMER ROU VAH

OK to file? <Y> <RET>

OpenVMS User Name: > <RET>

OK to activate changes now? <Y> <RET>

Creating access authorization file: SYS$SYSDEVICE:[DSMMGR]DSM$ACCESS.DAT.

26 Developer / System Manager Manual October 2003
VistALink Version 1.0

Managing the Listener

Example (Contains Recommended Settings)

1. Review the XMINET (TCP/IP MailMan) VMS account.

$SET DEF SYS$SYSTEM
$MC AUTHORIZE
UAF> SHOW XMINET

Username: XMINET Owner: DSM
Account: UIC: [50,44] ([XMINET])
CLI: DCL Tables: DCLTABLES
Default: SYS$SYSDEVICE:[XMINET]
LGICMD: NL:
Flags: DisCtlY Restricted Captive
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
Primary 000000000011111111112222 Secondary 000000000011111111112222
Day Hours 012345678901234567890123 Day Hours 012345678901234567890123
Network: ##### Full access ###### ##### Full access ######
Batch: ----- No access ------ ----- No access ------
Local: ----- No access ------ ----- No access ------
Dialup: ----- No access ------ ----- No access ------
Remote: ----- No access ------ ----- No access ------
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: (pre-expired)
Last Login: (none) (interactive), 10-FEB-1998 15:30 (non-interactive)
Maxjobs: 0 Fillm: 500 Bytlm: 100000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 150 JTquota: 4096
Prclm: 8 DIOlm: 18 WSdef: 1344
Prio: 4 ASTlm: 176 WSquo: 2688
Queprio: 4 TQElm: 10 WSextent: 65536
CPU: (none) Enqlm: 3000 Pgflquo: 100000
Authorized Privileges:
 NETMBX OPER SHARE TMPMBX
Default Privileges:
NETMBX OPER SHARE TMPMBX

2. Copy XMINET (TCP/IP MailMan) account to a new account with unused UIC

Note: This example assumes that UIC [51,45] is an unused UIC. Substitute an unused
UIC on your system.

UAF> COPY /ADD XMINET VLINK/UIC=[51,45]
%UAF-I-COPMSG, user record copied
%UAF-W-DEFPWD, copied or renamed records must receive new password
%UAF-I-RDBADDMSGU, identifier VLINK value [000051,000045] added to rights
database

UAF> SHOW VLINK

Username: VLINK Owner: DSM
Account: UIC: [51,45] ([VLINK])
CLI: DCL Tables: DCLTABLES
Default: SYS$SYSDEVICE:[XMINET]
LGICMD: NL:
Flags: DisCtlY Restricted Captive
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
Primary 000000000011111111112222 Secondary 000000000011111111112222

October 2003 Developer / System Manager Manual 27
VistALink Version 1.0

Managing the Listener

Day Hours 012345678901234567890123 Day Hours 012345678901234567890123
Network: ##### Full access ###### ##### Full access ######
Batch: ----- No access ------ ----- No access ------
Local: ----- No access ------ ----- No access ------
Dialup: ----- No access ------ ----- No access ------
Remote: ----- No access ------ ----- No access ------
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: (pre-expired)
Last Login: (none) (interactive), (none) (non-interactive)
Maxjobs: 0 Fillm: 500 Bytlm: 100000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 150 JTquota: 4096
Prclm: 8 DIOlm: 18 WSdef: 1344
Prio: 4 ASTlm: 176 WSquo: 2688
Queprio: 4 TQElm: 10 WSextent: 65536
CPU: (none) Enqlm: 3000 Pgflquo: 100000
Authorized Privileges:
 NETMBX OPER SHARE TMPMBX
Default Privileges:
 NETMBX OPER SHARE TMPMBX

3. Modify home login directory of the new account.

UAF> MOD VLINK/DIR=[VLINK]
%UAF-I-MDFYMSG, user record(s) updated
UAF> EXIT

%UAF-I-DONEMSG, system authorization file modified
%UAF-I-RDBDONEMSG, rights database modified

4.3.6 How to Control the Number of Log Files Created by the TCP/IP
Service

The VLINK TCP/IP Service automatically creates log files (this cannot be prevented) in the VLINK
directory named “VLINK.LOG;xxx,” where 'xxx' is a file version number. New versions of this file
will be created until that file version number reaches the maximum number of 32767. In order to
minimize the number of log files created, you may want to initially rename this log file to the highest
version number with the command:

 $ RENAME disk$:[VLINK]VLINK.LOG; disk$:[VLINK]VLINK.LOG;32767

Alternatively, you can set a limit on the number of versions of the log file that can concurrently exist
in the VLINK directory:

 $ SET FILE /VERSION_LIMIT=10 disk$:[VLINK]VLINK.LOG;

Note: You probably should not limit the number of versions of the log file until you know your VistALink
service is working correctly; keeping the log files can help when diagnosing problems with the
service/account.

28 Developer / System Manager Manual October 2003
VistALink Version 1.0

Managing the Listener

4.3.7 Editing the Foundations / VistALink Site Parameters for OpenVMS

To edit VistALink related site parameters, use the Site Parameters action on the Foundations Manager
interface.

HEARTBEAT RATE: 600// <Enter>
LATENCY DELTA: 180// <Enter>

Definitions for the OpenVMS site parameter fields appear in Table 5, below.

Field Meaning

Heartbeat Rate This field indicates the rate the VistALink heartbeat message should be
expected from a client. If there is no activity on the connection for this
amount of time, the client will send a system heartbeat message.

The client, as part of the initial connection protocol, retrieves this value.
As a result, the client and the M server are always synchronized
regarding the heartbeat rate.

Latency Delta This field indicates the number of seconds to add to the HEARTBEAT
RATE when calculating the initial timeout value for the VistALink listener.

The client and the M server are synchronized regarding the
HEARTBEAT RATE. This latency parameter allows the site to fine tune
the timeout value. The site can to take into account any network
slowness or other factors that may delay the arrival of the system
heartbeat message from the client.

Table 5: Foundations/VistALink Site Parameter Entries – Cache Systems Description(s)

October 2003 Developer / System Manager Manual 29
VistALink Version 1.0

Java Logging Management

Chapter 5: Java Logging Management

5.1 Using Loggers
Logging is an important feature of any product as proper logging implementation allows shorter
troubleshooting times in production environment. VistALink uses log4j
http://jakarta.apache.org/log4j/docs/index.html logging framework for both debug and error logging
on the client side.

VistALink logging can be enabled on the end-user client workstation for any client application using
the VistALink libraries. To enable logging for VistALink, the Log4J library (log4j-1.x.x.jar - version
1.2.7 or higher) needs to be installed on the client workstation.

For log4j to work properly it has to be configured. If log4j configuration is not provided, you will see
a few warnings in the system output console about log4j initialization problems and no information
will be logged from VistALink.

Here is a sample log4j configuration file.

log4jConfig.xml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
 <!--
 Very verbose console appender.
 Prints out among other things class name, method name and
 line number where logging is coming from.
 Caution: this will slow down your system considerably, so use it
 only for development and testing purposes.
 -->
 <appender name="verboseConsoleAppender" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%-4r [%t] %-5p class %C method %M
line number %L category %c %x - %m%n"/>
 </layout>
 </appender>

 <!--
 Detail console appender prints out less info than verbose console
appender
 and does not produce as much performance impact as verbose appender.
 Can be used in production environment.
 -->
 <appender name="detailConsoleAppender" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%-4r [%t] %-5p %x %m%n"/>
 </layout>
 </appender>

 <!--
 Shortest and least useful console appender as it will not print out any
 additional info other than the message being passed into the logging
method.
 -->

30 Developer / System Manager Manual October 2003
VistALink Version 1.0

http://jakarta.apache.org/log4j/docs/index.htmls

Java Logging Management

 <appender name="briefConsoleAppender" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%m%n"/>
 </layout>
 </appender>

 <!--
 Audit console appender that is used to capture VistALink interaction
time.
 Use org.apache.log4j.RollingFileAppender
 instead of org.apache.log4j.ConsoleAppender to send output to the file.
 -->
 <appender name="interactionAuditConsoleAppender"
class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="Time to execute VistALink
interaction: %m%n"/>
 </layout>
 </appender>

 <!--
 VistaSocketConnection interaction execution audit timer logger.
 Do not disable this as you will loose info on how much time it takes
 to execute Java to M interactions.
 -->
 <logger name="gov.va.med.foundations.adapter.spi.VistaSocketConnection.AuditLog"
additivity="false">
 <level value="info" />
 <appender-ref ref="interactionAuditConsoleAppender"/>
 </logger>

 <logger name="gov.va.med.foundations.samples.VistaLinkRpcSample"
additivity="false">
 <level value="debug" />
 <appender-ref ref="briefConsoleAppender"/>
 </logger>

 <logger name="gov.va.med.foundations.samples.VistaLinkRpcSample.Other"
additivity="false">
 <level value="debug" />
 <appender-ref ref="briefConsoleAppender"/>
 </logger>

 <logger name="gov.va.med.foundations" additivity="false" >
 <level value="debug" />
 <appender-ref ref="detailConsoleAppender"/>
 </logger>

 <root>
 <priority value ="debug" />
 <appender-ref ref="detailConsoleAppender"/>
 </root>

</log4j:configuration>

October 2003 Developer / System Manager Manual 31
VistALink Version 1.0

Java Logging Management

As you can see, this file defines four console appenders: verboseConsoleAppender,
detailConsoleAppender, briefConsoleAppender and interactionAuditConsoleAppender that use
different output patterns. To see other possible pattern parameters see:

 http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html.

Note that some parameters might slow down performance of your system considerably, especially
%C, %M, %L. This example uses console appender; other appenders such as RollingFileAppender
can be used.

VistALink uses its fully qualified class names for logger names. The log4j config file on the previous
page shows five loggers:

1. root

2. gov.va.med.foundations

3. gov.va.med.foundations.adapter.spi.VistaSocketConnection.AuditLog

4. gov.va.med.foundations.samples.VistaLinkRpcSample

5. gov.va.med.foundations.samples.VistaLinkRpcSample.Other.

The super parent of all loggers is the root logger. If logger is not specified, the next available logger
will be used. So for example if gov.va.med.foundations.utilities.AuditTimer logger is not specified in
the log4j config file, then log4j framework will look for logger named
gov.va.med.foundations.utilities. If this logger is not specified in the log4j config file, then log4j
framework will look for the logger named gov.va.med.foundations logger. If no loggers are found, the
root logger will be used. This allows for highly granular logging control.

Log level is another important parameter that can be controlled by the log4j configuration file. <level
value="debug" /> specifies which log level should be printed. Use debug level when you need to see
the details of VistALink logging. Use error when you need to see only errors being printed. Use off
level to turn logging off for all levels pertaining to a specific logger.

5.1.1 Recommended Loggers
gov.va.med.foundations – use this logger to control all Foundations logging.

gov.va.med.foundations.adapter.spi.VistaSocketConnection.AuditLog – enable this logger to see
performance statistics for the VistALink to M interactions. Output can be redirected to a separate file
using a separate appender.

5.1.2 Specifying the log4j Configuration File
There are a few ways to specify log4j configuration file at runtime.

1. Current directory – For quick test purposes, you can put the log4j configuration file into the
working directory where you are running your application. Since in Java the current directory is
NOT the directory of the Java application, this could get tricky.

2. Command line parameters – Use -Dlog4j.configuration=props/log4jConfig.xml to pass in the
location of the log4j configuration file. Important: this location is NOT a location relative to the
current directory, but instead a location relative to your Java CLASSPATH. This is a very
important distinction. So, in a Web application environment you could copy your
props/log4Config.xml file to the yourWebAppDir/WEB-INF/classes directory, as this directory is
in your classpath by default.

32 Developer / System Manager Manual October 2003
VistALink Version 1.0

http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.htmls

Java Logging Management

3. Use the log4j API from your code to load the configuration file relative to the current directory -
use DOMConfigurator.configure("props/log4jConfig.xml"); in your application code to specify
the log4j configuration file. Location of the config file is not the same as when passing the
config file in the command line parameter; here the config file location is relative to the current
directory.

4. Use log4j API from your code to load configuration file from classpath. In this case one can
retrieve configuration file as a resource URL using
MyClass.class.getClassLoader().getResource(“props/log4jConfig.xml") and pass it into
DOMConfigurator.configure(log4jConfigResourceURL). In this case location of the config file is
the same as when passing config file in command line parameter - config file location is relative
to the CLASSPATH.

5.1.3 Preventing Users From Snooping log4j Logs in J2SE Applications
With the log4j framework used in the J2SE environment it is important to understand the importance
of not letting users specify their own log 4j configuration files. This would become a security issue if
users were able to see all VistALink security traffic being logged.

Application developers can prevent this by making sure to use log4j configuration APIs.
(DOMConfigurator.configure("props/log4jConfig.xml");) to specify the log4j config file that resides
in a digitally signed jar files. Use log4j configuration APIs will override any command line
parameters that users might be trying to pass in, hence no other log4j config file could be used.
Digitally signing your jar file with the log4j config file inside it prevents users from modifying the
contents of this file.

October 2003 Developer / System Manager Manual 33
VistALink Version 1.0

Security Management

Chapter 6: Security Management
The subsections in this chapter detail VistALink security management.

6.1 Authentication Security
VistALink authentication, like that of the RPC Broker, is a wrapper around the Kernel login on your
M system. It obeys the same authentication rules as other Kernel logins on your system, and uses
Kernel code to obtain a "yes/no" authentication decision for each login attempt. As such, no new
"user management" tools are required, other than the standard Kernel user management system.

The VistALink M listener process receives and processes connection requests from client
applications. Connection by those client applications is subject to Kernel authentication as any normal
login requires.

To authenticate incoming connections to M, VistALink wraps Kernel’s current authentication
mechanism. To authorize incoming RPC requests, VistALink wraps the RPC Broker’s current RPC
authorization mechanism.

Security with the RPC Broker is a four-part process:

1. Client workstations must send a valid connection request to the M Server.

2. Users must have valid signon credentials recognized by Kernel (typically access and verify
codes).

3. Users must be authorized users (on the M system) of the application whose RPC calls are
being invoked by the client application.

4. Any RPC must be registered and valid for the application being executed.

6.2 Authentication Timeout Behavior
Prior to successful login, the VistALink login timeout on the client is set to the value of the Heartbeat
Rate as set in the VistALink site parameters for your site. The VistALink login dialogs time out based
on this value, dropping the (unauthenticated) connection to VistA.

After successful login, the M server side timeout is set by Kernel (in the variable DTIME). This value
is also returned for application use on the client side as part of the result of a successful login.
However, it is up to the application how it decides to implement client-side timeouts.

6.3 RPC Authorization
Client applications can use any RPC Broker remote procedure call (RPC) authorized to a Kernel “B”-
type option, if the “B”-type option is authorized to the signed-on user. Through this mechanism, data
is typically exchanged between clients and the VistALink server.

For more information regarding security enforced on RPCs, please see the RPC Broker Systems
Manual, available at http://www.va.gov/vdl/.

34 Developer / System Manager Manual October 2003
VistALink Version 1.0

http://www.va.gov/vdl/

Security Management

6.4 Limited Kernel Auto-Signon Support
VistALink supports Kernel auto-signon with the following restrictions (in addition to the existing
requirements for Kernel auto-signon):

• The Broker client agent must already be running on the workstation.

• Either an RPC Broker, Telnet, or VistALink connection may be the first active connection.

• On DSM systems, Kernel auto-signon for VistALink application is not currently supported,
but may be in the future. The current lack of support is related to differences in the way
VistALink processes are started and how client IP addresses are retrieved on DSM systems.

Finally, future implementation of other SSO solutions may result in the deprecation of Kernel auto-
signon.

6.5 Logger Security
VistALink uses the Log4J logging utility to write information to a configurable log. The information
written should not be security-sensitive. However, you may wish to disable VistALink's logging
output. For information on the security implications of VistALink's client-side Log4J logging, please
see the previous chapter on VistALink Logging.

October 2003 Developer / System Manager Manual 35
VistALink Version 1.0

Authenticating and Connecting to VistA

Part III – VistALink Programming

Chapter 7: Authenticating and Connecting to VistA

7.1 Overview
The J2SE version of VistALink establishes a connection from the Java client to the M server. This
connection remains open until closed by the client (unless the server is shut down).

The high-level steps to establish a VistALink connection to M are:

1. Providing server configuration information to VistALink (IP address and port of the M
VistALink listener to connect to)

2. Authenticating the end-user over the connection

3. Executing RPCs

4. Closing the connection (logging out)

VistALink uses the Java Authentication and Authorization Service (JAAS) framework for steps 1, 2
and 4 above (providing server configuration to VistALink; authenticating the end-user; and logging
out). For information on step 3, executing RPCs, see the Chapter 8 in this manual, “Executing
Requests.”

7.1.1 JAAS Overview
JAAS is a java pluggable framework for user authentication and authorization. “Pluggability” means
different security modules (e.g., authentication modules) can be added or “plugged in” to an
application without recompiling the application. VistALink uses the JAAS framework to authenticate
end-users to an M/Kernel system, via the users' customary Kernel access and verify codes.

A JAAS-compliant login module contains all of the logic required to authenticate a user to a given
system. The login module class does not itself, however, include the user interface to gather
authentication credentials (e.g., access and verify codes) from the end-user. Instead, a set of JAAS-
compliant callbacks, along with a JAAS-compliant callback handler, are used to de-couple the user
interface from the login module. VistALink provides a JAAS-compatible login module, and JAAS-
compliant callbacks and callback handlers, to perform a VistA login.

The JAAS framework also provides authorization capabilities; VistALink, however, uses JAAS for
authentication only. VistALink does not make any use of the permission/authorization portions of the
JAAS specification at this time.

36 Developer / System Manager Manual October 2003
VistALink Version 1.0

Authenticating and Connecting to VistA

7.2 VistALink JAAS Implementation
7.2.1 VistaLoginModule
VistALink provides a single JAAS-compliant login module class, VistaLoginModule. As a developer,
you do not use this class directly; instead, your application:

• Specifies which login module to use, via a JAAS configuration file

• Creates a LoginContext instance, and passes it a supported callback handler instance to
collect user input

• Invokes the login method of the LoginContext class to initiate the login process for the
configured login module

7.2.2 JAAS Login Configuration Overview
By default, VistALink uses the default JAAS configuration reader to load login configurations. The
default JAAS configuration reader class loads login configurations from a JAAS configuration file,
which it expects to be in a predefined format.

One or more configuration entries are defined in the JAAS configuration file. The configuration file
itself can have any name, and can be located anywhere. Each entry in the JAAS configuration file
defines a particular login configuration. Generically, the format of this file is:

ConfigurationName {
 ModuleClass Flag ModuleOptions;
 };

 ConfigurationName {
 ModuleClass Flag ModuleOptions;
 };

7.2.3 VistALink-Specific JAAS Login Configuration

Specifically for VistALink, an example of the format of the needed JAAS configuration file is:

Test {

gov.va.med.foundations.security.vistalink.VistaLoginModule requisite
gov.va.med.foundations.security.vistalink.ServerAddressKey="10.21.185"
gov.va.med.foundations.security.vistalink.ServerPortKey="18010";

};
Production {

gov.va.med.foundations.security.vistalink.VistaLoginModule requisite
gov.va.med.foundations.security.vistalink.ServerAddressKey="10.21.1.85"
gov.va.med.foundations.security.vistalink.ServerPortKey="8005";

};

This example defines two login configurations, one named "Test" and one named "Production." An
application uses this name ('Test' or 'Production') as the index to retrieve a particular configuration
from the JAAS configuration file.

October 2003 Developer / System Manager Manual 37
VistALink Version 1.0

Authenticating and Connecting to VistA

To configure a VistALink login to a VistA system, configure a single login module per login
configuration entry, within each entry's {braces}, as follows:

1. Name the VistALink login module class, including package name:
gov.va.med.foundations.security.vistalink.VistaLoginModule

2. Follow with a flag indicating what action to take if login fails; for VistALink, use:
requisite

3. Follow with options for the VistALink login module; there are two options that must be
set, in "name=value" format:
• gov.va.med.foundations.security.vistalink.ServerAddressKey
• gov.va.med.foundations.security.vistalink.ServerPortKey.
Use quotes around the server address and server port values.

4. Before the closing brace, end with a semicolon.
5. Follow the closing brace with a semicolon.

For more information about the JAAS configuration file format expected by the default JAAS
configuration file reader class, see:

http://java.sun.com/j2se/1.4.1/docs/guide/security/jgss/tutorials/LoginConfigFile.html.

Note: It is possible to define your own JAAS configuration reader class instead of using the default
class. If you do this, you are still responsible for providing the package/name of the
VistaLoginModule class, the JAAS "requisite" flag, and the two options required by the
VistaLoginModule.

7.2.4 Passing the JAAS Login Configuration(s) to Your JVM
The JAAS Login Configuration needs to be passed to the JVM (and hence to your application). The
JAAS configuration can be passed in two ways:

• The javax.security.auth.login.Configuration java virtual machine (JVM) argument when

launching your application, e.g.,

java -Djava.security.auth.login.config=jaas.config MyApp

• In the Java security properties file.

In most cases it is preferable to use the JVM argument, since this allows the setting to be application-
specific rather than machine-wide.

7.2.5 Selecting the JAAS Configuration From an Application
Once your application is running, it should select a specific configuration. In order to allow local
administration of JAAS configuration files, you should in most cases provide a command-line
parameter to allow local administrators to pass a particular JAAS configuration into your application.
For example:

java -Djava.security.auth.login.config=jaas.conf MyApp Production

38 Developer / System Manager Manual October 2003
VistALink Version 1.0

http://java.sun.com/j2se/1.4.1/docs/guide/security/jgss/tutorials/LoginConfigFile.html

Authenticating and Connecting to VistA

7.2.6 VistaLoginModule Callback Handlers
In order to de-couple the user interface for logon from the login module, the JAAS standard allows
login modules such as VistaLoginModule to supply different callback handlers. VistALink supplies
two callback handler classes, one for an interactive logon, and one for non-interactive unit testing:

• CallbackHandlerSwing: for production application use. Collects access code, verify code,
division and "change verify code" input via a set of Swing dialogs.

• CallbackHandlerUnitTest: for unit testing only (not production use). Access code, verify
code, division are passed as parameters to the class constructor, resulting in a "silent" login
suitable for (non-interactive) unit testing. "change verify code" functionality is not supported.

Part of the JAAS VistALink login involves instantiating one of these two callback handler classes and
passing the class as a parameter to create a JAAS login context (see below).

7.3 Putting the Pieces Together: VistALink JAAS Login
7.3.1 Logging in to VistA

The following is an example login. If application execution succeeds through the try block, the user
has successfully logged in to the specified VistA listener.

// variable holding LoginContext should have application scope
// since it will be needed to log out, lat
private LoginContext loginContext = null;

er on

try {

 // create the callback handler to use to collect user input

// pass current Frame as parameter
 CallbackHandlerSwing cbhSwing = new CallbackHandlerSwing(myFrame);

// create the LoginContext to control the login process;
 // pass the JAAS configuration to connect to, and the callback
 // handler (jaasConfigName value could be passed in from command
 // line)
 loginContext = new LoginContext(jaasConfigName, cbhSwing);

 // login to server thr
 loginContext.login();

ough the LoginContext

} catch (VistaLoginModuleException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

} catch (LoginException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

}

October 2003 Developer / System Manager Manual 39
VistALink Version 1.0

Authenticating and Connecting to VistA

7.4 After Successfully Logging In
7.4.1 Retrieving the VistaKernelPrincipal
Upon successful login, the JAAS subject (available from the JAAS LoginContext class after a
successful login) contains a JAAS principal (user entity), which holds:

• Demographic information about the logged-in user
• The authenticated VistALink connection object

The following code shows how to retrieve the Kernel principal after a successful login:

// variable holding Kernel principal may need application scope
// since it will be needed for RPC execution
private VistaKernelPrincipalImpl userPrincipal = null;

// . . . login code

// get the Kernel principal after logon
try {
 userPrincipal = VistaKernelPrincipalImpl.getKernelPrincipal(
 loginContext.getSubject());
} catch (FoundationsException e) {
 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);
}

After login, it is conceivable (in the future) that more than one principal could be contained in the
JAAS subject, if multiple login modules were used. This might happen if some kind of compound
login has been configured requiring several logins to complete, e.g., one for a Kernel M system, and
one for a separate health data repository. Only one *Kernel* principal should ever be returned,
however. Use the getKernelPrincipal helper method in the VistaKernelPrincipalImpl class to retrieve
the single Kernel principal.

7.4.2 Retrieving the Authenticated Connection From the Principal
To execute RPCs, you'll need to retrieve the authenticated connection. The authenticated connection
object over which you make requests is stored in the Kernel principal, and can be retrieved with the
getAuthenticatedConnection method.

Once a successful login has been completed, retrieve the associated authenticated connection from the
Kernel principal. You can then use this connection – which is "logged in" to the M system under the
end-user's identity – to execute requests such as RPCs on behalf of the end-user.

40 Developer / System Manager Manual October 2003
VistALink Version 1.0

Authenticating and Connecting to VistA

For more information on executing requests, see Chapter 8 of this manual, “Executing Requests.” An
example of successful login appears below.

VistaLinkConnection myConnection =
 userPrincipal.getAuthenticatedConnection();

// . . . now you can execute requests

For information on how to use the VistaLinkConnection object to execute requests, see the chapter on
executing requests, below.

7.4.3 Retrieving User Demographic Information
Use the following predefined static KEY* strings to retrieve user demographic values via the Kernel
principal's getUserDemographicValue method. For example:

// get the DUZ
String duz = this.userPrincipal.getUserDemographicValue(
 VistaKernelPrincipalImpl.KEY_DUZ);

// get the name
String name = userPrincipal.getUserDemographicValue(
 VistaKernelPrincipalImpl.KEY_NAME_DISPLAY);

The complete set of returned demographics information (and keys) is:

Key Value

KEY_DIVISION_IEN Login division station IEN

KEY_DIVISION_STATION_NAME Login division station name

KEY_DIVISION_STATION_NUMBER Login division station number

KEY_DTIME user timeout value

KEY_DUZ DUZ

KEY_LANGUAGE User language

KEY_NAME_DEGREE User degree

KEY_NAME_FAMILYLAST Name component family-last

KEY_NAME_GIVENFIRST Name component given-first

KEY_NAME_MIDDLE Name component middle

KEY_NAME_NEWPERSON01 New Person .01 Field name

KEY_NAME_PREFIX Name component prefix

KEY_NAME_SUFFIX Name component suffix

KEY_SERVICE_SECTION User service/section

KEY_NAME_DISPLAY Concatenated standard name

KEY_TITLE User title

October 2003 Developer / System Manager Manual 41
VistALink Version 1.0

Authenticating and Connecting to VistA

7.4.4 Logging Out
Your application should always call the logout method of the JAAS LoginContext class to log out of
VistA before exiting. This ensures that proper Kernel clean up (e.g., cleanup of the ^TMP global)
occurs on the M server to which the user was connected.

Logging Out of Swing Applications
In a Swing application, your application should always call the LoginContext's logout method when
the application is shut down. There are a number of ways an application can be shut down (the user
closes the application window, the application is terminated from the Windows control panel, etc.).

A good way to catch all of these shutdown cases is to implement a WindowAdapter as a window
listener in the application, and provide an implementation of its windowClosing method that calls the
LoginContext's logout method.

For example:

// loginContext has been defined earlier, with application scope

// add event listener to log out when window closes
frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 mylogout();
 System.exit(0);
 }
});

// Method called from event handler to perform logout
private void mylogout() {
 // Kernel logout
 if (this.userPrincipal != null) {

 try {
 loginContext.logout();
 } catch (LoginException e) {
 JOptionPane.showMessageDialog(null, e.getMessage(),
 "Logout error", JOptionPane.ERROR_MESSAGE);
 }
 }
}

42 Developer / System Manager Manual October 2003
VistALink Version 1.0

Authenticating and Connecting to VistA

7.5 Catching Login Exceptions
The LoginContext login() and logout() methods only throw exceptions that derive from
LoginException. So at a minimum, when executing the login or logout methods of a LoginContext
object, your application needs a try/catch block to catch LoginException.

VistaLoginModule provides more granular exceptions derived from LoginException so that your
application can optionally filter exceptions at a finer level of granularity, meaning that your
application can detect and implement specific processing for login exception types that might be of
interest.

7.5.1 VistaLoginModule Exceptions

Exception Description
VistaLoginModuleException Like a LoginException, but may contain

nested exception(s) that were the cause for
the LoginException.

VistaLoginModuleLoginsDisabledException Logins are disabled on the M server.
VistaLoginModuleNoJobSlotsAvailableException Job slot maximum has been exceeded on M

server.
VistaLoginModuleNoPathToListenerException No reachable listener was found on the path

represented by the specified IP address and
Port.

VistaLoginModuleTooManyInvalidAttemptsException The user tried to login too many times with
invalid credentials.

VistaLoginModuleUserCancelledException The user cancelled the login.
VistaLoginModuleUserTimedOutException The user timed out of the login.

For example, if your application is interested in whether the IP and port specified were "bad" (at least
at the time the login was attempted), you can trap for the VistaLoginModuleNoPathToListener
exception, in addition to the standard LoginException:

try {

 // create the callback handler to use to collect user input
 CallbackHandlerSwing cbhSwing = new CallbackHandlerSwing(myFrame);

 // create the LoginContext to control the login process.
 loginContext = new LoginContext(serverAlias, cbhSwing);

 // login to server through the LoginContext
 loginContext.login();
} catch (VistaLoginModuleLoginsDisabledException e) {

October 2003 Developer / System Manager Manual 43
VistALink Version 1.0

Authenticating and Connecting to VistA

JOptionPane.showMessageDialog(
 null,
 "Logins are disabled; try later.",
 "Login error",
 JOptionPane.ERROR_MESSAGE);

} catch (LoginException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

7.6 Unit Testing and VistALink
Because of the pluggable JAAS architecture, the user interface for login (to collect information from
the end-user such as username and password) is separate from the logic that implements login. The
user interface is contained in a JAAS-compliant set of callbacks; the login logic is contained in a
JAAS-compliant login module. Therefore, the JAAS framework makes it straightforward to
implement alternative user interfaces for login.

VistALink provides an alternative callback handler that implements a "silent" login suitable for unit
testing purposes (but not suitable for any production environment). Your application passes the
access code, verify code (and optionally division) to use to silently (non-interactively) login your
application. Changing verify code is not supported with this callback handler.

For example:

// Connection info
String cfgName = "Production";

// signon credentials for unit test callback handler
String accessCode = "asdf.123";
String verifyCode = "asdf.456";
String division = "";

try {

 // create the "unit test" callbackhandl
 CallbackHandlerUnitTest cbhUnitTest =

er for JAAS login

 new CallbackHandlerUnitTest(accessCode, verifyCode, division);

 // create the JAAS LoginContext for login
 lc = new LoginContext(cfgName, cbhUnitTest);

 // login to server
 lc.login();

} catch (VistaLoginModuleException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

} catch (LoginException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

44 Developer / System Manager Manual October 2003
VistALink Version 1.0

Executing Requests

Chapter 8: Executing Requests

8.1 Remote Procedure Calls (RPCs)
A remote procedure call (RPC) is a defined call to M code that runs on an M server. A client
application, through the RPC Broker, can make a call to the M server and execute an RPC on the M
server. This is the mechanism through which a client application can:

• Send data to an M server

• Execute code on an M server

• Retrieve data from an M server

An RPC can take optional parameters to do some task and then return either a single value or an array
to the client application.

**For detailed information on RPCs, please refer to Getting Started With the Broker Development Kit (BDK)
and/or the RPC Broker Technical Manual. Find both these publications at http://www.va.gov/vdl/. **

8.2 Request Processing
During interactions with M from Java, developers use the RpcRequest object. The RpcRequest object
encapsulates the data that will be sent to M to execute an interaction, i.e. RPC name, RPC parameters
and RPC context. The RpcRequest object is constructed using the RpcRequestFactory object. The
RPC parameters are accessed through the RpcRequest objects via clearParams(), getParams() and
setParams() methods.

8.2.1 Get an RpcRequest Object: RpcRequestFactory Class
The RpcRequest class represents a request from Java to M. As the transport format, it permits the use
of XML or a proprietary format that is faster for large amounts of data. Also, this class exposes
methods for specifying Rpc Name, Rpc Context and the parameters used by M to execute the RPC.

The RpcRequestFactory class is responsible for creating instances of RpcRequest. In order to create
an RpcRequest, the developer must call the static getRpcRequest method on this class. In the example
shown below, getRpcRequest is overloaded with three declarations.

public static RpcRequest getRpcRequest() throws FoundationsException

This method is used to create a default RpcRequest with no specified Rpc Name or Rpc Context. You
must specify the Rpc Context and the Rpc Name on the RpcRequest object before you can use this
object in an interaction. Refer to javadoc on RpcRequest for more information.

public static RpcRequest getRpcRequest(String rpcContext) throws
FoundationsException

This method is used to create a RpcRequest with the specified Rpc Context. You must specify the
Rpc Name on the RpcRequest object before you can use this object in an interaction. Refer to the
javadoc on RpcRequest for more information.

October 2003 Developer / System Manager Manual 45
VistALink Version 1.0

http://www.va.gov/vdl/

Executing Requests

public static RpcRequest getRpcRequest(String rpcContext, String
rpcName) throws FoundationsException

This method is used to create a RpcRequest with the specified Rpc Context and the Rpc Name. You
may still specify another Rpc Context and Rpc Name on this object. Refer to the javadoc on
RpcRequest for more information.

J2SE Example:
RpcRequest vReq = null;

//The Rpc Context
String rpcContext = "XOBV VISTALINK TESTER";

//The Rpc to call
String rpcName = "XWB GET VARIABLE VALUE";

//Construct the request object
try{

vReq = RpcRequestFactory.getRpcRequest(rpcContext, rpcName);
}catch(FoundationsException e){
 // process exception as needed
}

8.2.2 Set RpcRequest Parameters: Explicit Style
There are two ways of passing RPC parameters to an RpcRequest object. For the sake of
convenience, the first method is referred to as explicit style, the second method as list style.

In explicit style, the method of passing RPC parameters corresponds very closely to the underlying
RPC parameters. The RPC Broker has three input parameter types for RPC calls. These map to
VistALink RpcRequestParam parameter types as follows:

RPC parameter type VistALink RpcRequestParam type

Literal "string"
Reference "ref"
List "array"

To pass parameters into an RpcRequest, retrieve the RpcRequest's mutable RpcRequestParam object,
accessible by RpcRequest.getParams(). Then, on that object, call setParam() to define each RPC
parameter:

 void setParam(int position, String type, Object value)

The parameters to this call are:

• position: the expected RPC parameter list position where the RPC expects to see the RPC
parameter

• type: can be "string", "ref" or "array" (to match the expected RPC parameter type)

• value: an object that is the value of the RPC parameter. For "string" or "ref" types, the object
should be a string. For "array" types, the object should implement the Map, List or Set
interface.

46 Developer / System Manager Manual October 2003
VistALink Version 1.0

Executing Requests

Literal RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
vReq.getParams().setParam(1, "string", "I am a string");

Reference RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
vReq.getParams().setParam(1, "ref", "DTIME");

List RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList nums = new ArrayList();
nums.add("3");
nums.add("5");
nums.add("4");
nums.add("1");
nums.add("7");
nums.add("8");
nums.add("2");
nums.add("6");
nums.add("9");
vReq.getParams().setParam(1, "array", nums);

Combination RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList nums = new ArrayList();
nums.add("3");
nums.add("5");
nums.add("4");
nums.add("1");
nums.add("7");
nums.add("8");
nums.add("2");
nums.add("6");
nums.add("9");
vReq.getParams().setParam(1, "array", nums);
vReq.getParams().setParam(2, "string", "I am a string");
vReq.getParams().setParam(3, "ref", "DTIME");

8.2.3 Set RpcRequest Parameters: List Style
A second style of passing RPC parameters for an RPC into an RpcRequest object is called the List
style. This method offers a small amount of abstraction away from the underlying RPC, although
parameters still must correspond directly to what is expected by the RPC being invoked.

With List style, you create an object that implements the List interface, and that holds each of the
parameters as an object entry in the list. Add each parameter as an object value to the List, and then
use RpcRequest.setParams(List) to pass the RPC parameters to the request..

October 2003 Developer / System Manager Manual 47
VistALink Version 1.0

Executing Requests

The RpcRequest object processes the List internally as follows, to extract the RPC parameter
characteristics for the request:

• position: Determined by the order each object was added to the List. The first object added
becomes the first RPC parameter, the second becomes the second, and so forth.

• type:

o If an object found in the List is a String, it is passed as an RPC literal parameter.
o If an object found in the List implements the Map, List, or Set interfaces, it is passed as

an RPC List parameter.
o If an object found in the List is an instance of the special RpcReferenceType class, it is

passed as an RPC reference parameter.

• value: The value for the RPC parameter is simply the object added to the List for each
parameter.

Literal RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
params.add("I am a string");
vReq.setParams(params);

Reference RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
params.add(new RpcReferenceType("DTIME"));
vReq.setParams(params);

List RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
ArrayList nums = new ArrayList();
nums.add("3");
nums.add("5");
nums.add("4");
nums.add("1");
nums.add("7");
nums.add("8");
nums.add("2");
nums.add("6");
nums.add("9");
params.add(nums);
vReq.setParams(params);

Combination RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
ArrayList nums = new ArrayList();
nums.add("3");

48 Developer / System Manager Manual October 2003
VistALink Version 1.0

Executing Requests

nums.add("5");
nums.add("4");
nums.add("1");
nums.add("7");
nums.add("8");
nums.add("2");
nums.add("6");
nums.add("9");
params.add(nums);
params.add("I am a string");
params.add(new RpcReferenceType("DTIME"));
vReq.setParams(params);

8.2.4 Other Useful RpcRequest Methods

Clear Previous Request Parameters
If you are re-using a request object for additional requests, the RpcRequest.clearParams method is
provided so that you can clear any existing parameters; you should call this method before attempting
to set RPC parameters for subsequent requests.

//clear the params
vReq.clearParams();

Set the Message Format (Proprietary or XML)
VistALink's XML message format is based on the XML standard; its non-XML proprietary format is
faster for large amounts of data. You can choose either; RpcRequest defaults to proprietary format.

//Set the request to use the propietary message format
vReq.setUseProprietaryMessageFormat(true);

//Set the request to use the XML message format
vReq.setUseProprietaryMessageFormat(false);

Set the RPC Context
If you are re-using a request object for additional requests, you can change the RPC Context with this
method.

private static final String RPCCONTEXT = "XOBV VISTALINK TESTER";
vReq.setRpcContext(RPCCONTEXT);

Set the RPC Name
If you are re-using a request object for additional requests, you can change the RPC Name with this
method.

vReq.setRpcName("XOBV TEST NOT IN CONTEXT");

October 2003 Developer / System Manager Manual 49
VistALink Version 1.0

Executing Requests

Set the RPC Client Timeout
The RPC client timeout currently defaults to 600 seconds. You can change this value by calling the
setRpcClientTimeOut method:

private static final int TIMEOUT = 300;
vReq.setRpcClientTimeOut(TIMEOUT);

For a complete list of other available RpcRequest methods, please see the javadoc for RpcRequest.
Also, refer to Chapter 8 of the VistALink Technical Manual and Package Security Guide. Look at the
subsections titled “RPC timeout handling call tags” and “RPC Time Out Process.”

8.3 Response Processing
Once you have set up RpcRequest, you can execute an RPC interaction using the RpcRequest object,
on the VistALinkConnection object. Doing this returns an RpcResponse object. RpcResponse is a
value object that provides information about the response returned from M.

8.3.1 RpcResponseFactory Class
The RpcResponseFactory is responsible for constructing a response of type RpcResponse and
handling faults that would be returned from M while processing RPC requests. This class does not
need to be accessed directly, rather invoking VistaLinkConnection.executeRPC(request) will
indirectly use this response factory to construct a RpcResponse.

8.3.2 RpcResponse Class
The RpcResponse class is a value object that provides information about the response returned from
M. The RpcResponse object exposes methods to retrieve the results, results type and an
org.w3c.dom.document object that contains the results if the results are in XML format.

8.3.3 Sample Code

J2SE Example:

//request and response objects
RpcRequest vReq = null;
RpcResponse vResp = null;

//The Rpc Context
String rpcContext = "XOBV VISTALINK TESTER";

//The Rpc to call
String rpcName = "XOBV TEST STRING";

//Construct the request object
try{
 vReq = RpcRequestFactory.getRpcRequest(rpcContext, rpcName);
}catch(FoundationsException e){
 // process exception as needed
}

50 Developer / System Manager Manual October 2003
VistALink Version 1.0

Executing Requests

//clear the params
vReq.clearParams();

//Set the params
vReq.getParams(). setParam(1, "string", "This is a test string!");

//Set the request to use the proprietary message format
vReq.setUseProprietaryMessageFormat(true);

//Execute the Rpc and construct the response with the
//RpcResponseFactory
try{
 vResp = vistaLinkConnection.executeRPC(vReq);
}catch(VistaLinkFaultException e){
 // process exception as needed
}catch(FoundationsException e){
 // process exception as needed
}

//Display the response
System.out.println(vResp.getResults());

8.3.4 Parsing RPC Results
All results from RPCs are returned as a single string, from RpcResponse.getResults().

Note: The RPC Broker defines five return types for RPCs (at the time of the current VistaLink release). The
mapping between these return types and the single string returned through VistaLink are as follows:

RPC Return type VistALink Result String Format
Single Value as-is
Global Instance as-is
Array all array nodes concatenated sequentially, with each delimited by linefeed

(ASCII 10) character
Global Array all array nodes concatenated sequentially, with each delimited by linefeed

(ASCII 10) character
Word Processing each word processing "line" concatenated sequentially, separated by a

linefeed (ASCII 10) character

One easy way to parse array-type results concatenated with linefeeds is with the java string tokenizer.
For example:

StringTokenizer st = new StringTokenizer(vResp.getResults(), "\n");
int cnt = st.countTokens();
for (int i = 0; i < cnt; i++) {
 system.out.println("Result node " + i + ": " + st.nextToken());
}

October 2003 Developer / System Manager Manual 51
VistALink Version 1.0

Executing Requests

8.3.5 XML Responses
Some newer RPCs may return their results as an XML document. The RpcResponse class provides
two helper methods to turn the normal results string into an XML document. If you expect the results
from an RPC to be an XML document you can call RpcResponse.isXmlResponse to confirm if the
response is in XML format, and RpcResponse.getResultsDocument to convert the result string into an
XML document:

//Get a org.w3c.dom.document object that contains the results if set
if (vReq.isXmlResponse()) {

org.w3c.dom.document xmlDoc = null;
try{

xmlDoc = vResp.getResultsDocument());
}catch(RpcResponseTypeIsNotXmlException e){

// process exception as needed
}catch(FoundationsException e){

// process exception as needed
}

}

52 Developer / System Manager Manual October 2003
VistALink Version 1.0

Utilities

Chapter 9: Utilities

9.1 VistaKernelHash
The VistaKernelHash utility class implements two static methods, encrypt and decrypt, providing the
encoding / obfuscation algorithms used by the RPC Broker and Kernel to encode and decode data
strings. Using these algorithms makes it harder to sniff the contents of text sent over the network.
This is not, however, encryption-class encoding, nor does it protect against replay attacks of un-
decoded strings, and therefore use of this algorithm should not be considered an implication or
achievement of any particular security level.

For example (encoding):

String encodedString =
 VistaKernelHash.encrypt("some text to encode", true);

The second parameter is useful if the text is to be passed in a CDATA section of an XML message. If
this parameter is set to true, the returned encoded strings will contain neither "]]>" nor "<![CDATA[".
Otherwise, it is possible a returned encoding may contain those character sequences. If, in a
reasonable number of tries, an encoded string cannot be created that doesn't contain these CDATA
boundaries, an exception of type VistaKernelHashCountLimitExceededException is thrown.

For example (decoding):

String decodedString =
 VistaKernelHash.decrypt(encodedString);

9.2 XmlUtilities
9.2.1 XmlUtilities Class
This class contains a number of static utility methods to help developers work with XML documents,
nodes, attributes and strings. These utilities are XML parser independent.

October 2003 Developer / System Manager Manual 53
VistALink Version 1.0

Utilities

Table 6 and Table 7, below, briefly list the VistALink utility methods and variables, along with their
description(s).

Static Method Signature Description
String convertXmlToStr(Document doc) Converts a DOM document to a string
Document getDocumentForXmlString(String xml) Returns an XML DOM Document for the

specified String
Document getDocumentForXmlInputStream(InputStream
xml)

Returns an XML DOM Document for the
specified InputStream

Attr getAttr(Node node, String attrName) Returns the Attribute with the
given attrName at node

Node getNode(String xpathStr, Node node) Returns the first node at the
specified XPath location

Table 6: Methods Description

Static Final Variables Description
String XML_HEADER Represents the default header used

for all xml documents that
communicate with an M server via
VistALink. It is important to use
this header as keeps the client and
M server in sync.

Table 7: Final Variables Description

9.2.2 Sample Code

J2SE Example:

String xmlStr = XmlUtilities.XML_HEADER
 + "<VistaLink messageType='"
 + RpcRequest.GOV_VA_MED_RPC_REQUEST
 + "'"
 + " mode='singleton'"
 + " version='1.0'"
 + " xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'"
 + " xsi:noNamespaceSchemaLocation='rpcRequest.xsd'"
 + " xmlns='http://med.va.gov/Foundations'"
 +">"
 + " <RpcHandler version='1.0'/>"
 + " <Request rpcName='' rpcClientTimeOut='600' version='1.0' >"
 + " <RpcContext></RpcContext>"
 + " <Params><Param type=’array’ ></Param></Params>"
 + " </Request>"
 + "</VistaLink>";

Document doc = XmlUtilities.getDocumentForXmlString(xmlStr);

Node param = XmlUtilities.getNode("/VistaLink/Request/Params/Param",
requestDoc);

String type = XmlUtilities.getAttr(param, "type").getValue();
String xmlCopy = XmlUtilities.convertXmlToStr(xmlDoc);
...
FileInputStream xmlStream = FileInputStream(“myRequest.xml”);
Document myReq = XmlUtilities.getDocumentForXmlInputStream(xmlStream);
...

54 Developer / System Manager Manual October 2003
VistALink Version 1.0

Utilities

9.3 AuditTimer

gov.va.med.foundations.utilities.AuditTimer is used within VistALink to capture and log information
on how long it took to execute a specific VistALink interaction using lo4j-logging capabilities.

Special logger gov.va.med.foundations.adapter.spi.VistaSocketConnection.AuditLog is used to output
this information. Applications can use AuditTimer independently if they want to report timer
information for various processing requests.

Two type of constructors can be used to construct AuditTimer instance:
public AuditTimer() – default logger “gov.va.med.foundations.utilities.AuditTimer” will be used.
public AuditTimer(Logger logger) – application specific logger will be used.

AuditTimer logs milliseconds elapsed between start() and stop() calls.

Number of elapsed milliseconds can be retrieved using getTimeElapsedMillis().

Logging can be done using either log() method:
public void log()
public void log(String message) – Since logger can be passed into the constructor and output pattern
for a specific logger can be configured using log4j configuration file, there should be no need to pass
info message. Instead different loggers should be used.

Sample code:

import gov.va.med.foundations.utilities.AuditTimer;

public class AuditTimerTest {
 private static AuditTimer timer = null;
 private static Logger auditLogger =
Logger.getLogger(AuditTimerTest.class.getName() + ".AuditLog");

 public static void main(String[] args) {
 // Initialize Log4j configuration
 DOMConfigurator.configureAndWatch("props/log4jConfig.xml",
10000);

 timer = new AuditTimer(auditLogger);
 // Start timer
 timer.start();

 // ... perform your operations

 // Stop timer
 timer.stop();

 // Log elapsed time information
 timer.log();

 // Get time elapsed if not for logging purposes
 long timeElapsed = timer.getTimeElapsedMillis();
 }
}

October 2003 Developer / System Manager Manual 55
VistALink Version 1.0

Utilities

The following is a snippet from the log4j configuration file:

 <appender name="auditTimerTestConsoleAppender"
class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="Audit time - %m%n"/>
 </layout>
 </appender>

 <logger
name="gov.va.med.foundations.utilities.test.AuditTimerTest.AuditLog" >
 <level value="debug" />
 <appender-ref ref="auditTimerTestConsoleAppender"/>
 </logger>

56 Developer / System Manager Manual October 2003
VistALink Version 1.0

Exceptions

Chapter 10: Exceptions
VistALink, like any other Java application, uses exceptions to indicate various error conditions that
could occur during excecution.

10.1 Checked and Unchecked Exceptions
There are two types of exceptions in Java programming language – checked and unchecked
exceptions.

Checked exceptions have to be declared in the method signature throws clause if they are thrown by
the method. Checked exceptions have to be explicitly caught by the caller within a try / catch block.

Unchecked exceptions do not have to be declared in the method signature if they are thrown by the
method. Unchecked exceptions do not need to be explicitly cought by the caller. Unchecked
exceptions can be caught by the caller even if method do not explicitly throw them.

The diagram below depicts a class hierarchy of base Java exception classes:

Throwable

ErrorException

RuntimeException

Unchecked exceptions

Checked exceptions

java.lang.Error – unchecked - reserved to JVM exceptions - memory, out of stack etc.

java.lang.RuntimeException – unchecked - reserved for JVM exceptions that are not as fatal as
java.lang.Error exceptions, such as array index out of bound, null pointer exception etc.

class java.lang.Exception – checked - application level exceptions

VistALink throws only checked exceptions.

10.2 Catching Exceptions
It is important to remember that an application calling a method that (in turn) throws exception A can
do two things:

1. catch this exception A

2. catch any exception AB that is subclassed from exception A, even though calling a method
declaration only declares to throw a parent exception

October 2003 Developer / System Manager Manual 57
VistALink Version 1.0

Exceptions

Example:

public class ParentException extends Exception {
}
public class SubException extends ParentException {
}
public class ExceptionSample {

 public static void test() throws ParentException {
 throw new SubException();
 }

 public static void main(String[] args) {
 try {
 ExceptionSample.test();
 } catch (SubException e) {
 System.out.println("Caught SubException exception");
 } catch (ParentException e) {
 System.out.println("Caught ParentException exception");
 }
 }
}

In this example, we are declaring ParentException and its subclass SubException. ExceptionSample
class has a method test() that declares to throw ParentException. Method test() implementation
instead throws a more specific exception SubException. The test() method could choose to declare the
fact that it is throwing both ParentException and SubException, but that is not required by the Java
specifications.

The test() method caller can only catch ParentException. This takes care of catching ParentException
and all ParentException subclasses. But if test() method caller knows that test() method throws a
more specific exception, (a subclass of the ParentException) then the caller can choose to catch a
more specific SubException, even though test() method does not explicitly declare the fact that it
throws SubException.

This is an important point, as both the VistALink security modules and the VistALink connector
modules often throw more specific VistALink exceptions, even though those exceptions are not
declared to be thrown and only parent exceptions are declared to be thrown from VistALink methods.

58 Developer / System Manager Manual October 2003
VistALink Version 1.0

Exceptions

10.3 VistALink Exception Hierarchy
Below is a VistALink exception class diagram.

VistaLinkResourceException

HeartBeatFailedException

HeartBeatInteraction
FailedException

LoginsDisabledFaultException

NoJobSlotsAvailable
FaultException

VistaLinkFaultException

ConnectionHandles
ExceededException

VistaLinkSocketClosedException

VistaSocketException

VistaSocketTimeOutException

NoRpcContextFaultException

RpcFaultException

RpcNotInContextFaultException

RpcResponseTypeIsNot
XmlException

RpcTimeOutFaultException

SecurityFaultException

TooManyInvalidLogin
AttemptsFaultException

VistaLoginModuleException

VistaLoginModuleLogins
DisabledException

VistaLoginModuleNoJob
SlotsAvailableException

VistaLoginModuleNoPath
ToListenerException

VistaLoginModuleTooMany
InvalidAttemptsException

VistaLoginModuleUser
CancelledException

VistaLoginModuleUserTimed
OutException

ExceptionUtils

FoundationsException

«JavaInterface»
FoundationsExceptionInterface

VistaKernelHashCount
LimitExceededException

ResourceException

NotSupportedException

LoginException

Exception

«use»

Since VistALink implements various Java specificitions such as JAAS and J2EE Connectors, each
Java specification dictates usage of a specific base exception class. To be able to work with all types
of exceptions we are defining one unifying exception interface
gov.va.med.foundations.utilities.FoundationsExceptionInterface:

Two methods are defined in this interface: getFullStackTrace() and getNestedException(). These
methods are used by utility classes such as gov.va.med.foundations.utilities.ExceptionUtils to retrieve
nested exception information.

October 2003 Developer / System Manager Manual 59
VistALink Version 1.0

Exceptions

10.4 JAAS Exceptions
JAAS requires LoginModules to throw javax.security.auth.login.LoginException from JAAS classes
implementation methods.

VistALink security classes use gov.va.med.foundations.security.vistalink.VistaLoginModuleException
that extends javax.security.auth.login.LoginException.

A more specific JAAS exceptions are available for VistALink users to catch and reside in
gov.va.med.foundations.security.vistalink package (see exception class diagram provided above):

VistaLoginModuleLoginsDisabledException

VistaLoginModuleNoJobSlotsAvailableException

VistaLoginModuleNoPathToListenerException

VistaLoginModuleTooManyInvalidAttemptsException

VistaLoginModuleUserCancelledException

VistaLoginModuleUserTimedOutException

10.5 J2EE Connectors Exceptions
J2EE Connectors requires adapter methods to throw javax.resource.ResourceException.

10.5.1 VistaLinkResourceException
VistALink implements gov.va.med.foundations.adapter.cci.VistaLinkResourceException that extends
javax.resource.ResourceException. VistaLinkResourceException is thrown from all J2EE Connectors
required methods as well as any custom method in VistALink that implements connection
management interfaces.

VistaLinkResourceException more specific exception subclasses include: (see exception class
diagram provided above)

ConnectionHandlesExceededException

VistaLinkSocketClosedException

HeartBeatFailedException and HeartBeatInteractionFailedException.

See adapter section <link> of the document for more details.

10.5.2 FoundationsException
J2EE Connectors defines optional record and interaction management interfaces that are not
implemented in VistALink. Instead VistALink uses VistaLinkConnection::executeRPC(),
VistaLinkConnection::executeInteration() and classes in gov.va.med.foundations.adapter.record
package to implement interaction and record management. These methods are not governed by J2EE
Connectors. Hence VistALink uses gov.va.med.foundations.utilities.FoundationsException and it’s
subclasses in these methods.

10.5.3 VistaLinkFaultException
VistALink communications with M can produce exceptions that originate from the Java code side. In
that case VistaLinkResourceException and FoundationsException will be thrown that are described
above.

60 Developer / System Manager Manual October 2003
VistALink Version 1.0

Exceptions

VistALink communications with M can also produce exceptions that originate from the M side. In
those cases a Fault message is sent back to VistALink from M. Fault messages are parsed and
gov.va.med.foundations.adapter.record.VistaLinkFaultException that extends FoundationsException
are constructed to be thrown in those cases. VistaLinkFaultException will have all the information
that is sent back from the M side to Java, including: faultCode, faultString, faultActor, errorCode,
errorType and errorMessage.

VistaLinkFaultException more specific exception subclasses include: (see exception class diagram
provided above)

NoJobSlotsAvailableFaultException

LoginsDisabledFaultException

SecurityFaultException that in turn have more specific subclasses.

RpcFaultException that in turn have more specific subclasses.

See adapter section <link> of the document for more details.

10.5.4 Common Exception Interface
gov.va.med.foundations.utilities.FoundationsExceptionInterface is defined to be able to have common
interface for all types of VistALink exceptions. Implementation of this interface allows
gov.va.med.foundations.utilities.ExceptionUtils to work exceptions no matter what they inherit from.

10.5.5 Exception Nesting
Exception nesting is a technique to nest exceptions that is used to collect full information about the
error that occurred in processing method call.

Example: Exception A can be thrown from a library. Client code catches the exception A and rethrows
new exception B while preserving the original exception A within new exception’s member variables.

This new exception B once again could be cought by some other client code that could throw new
exception C while preserving cought exception B within exception’s C member variables:

A nested within B nested within C.

This way all exceptions that are cought and rethrown are kept as a linked exception list allowing us
not to loose any information about the error origination and how it is handled by the code.

JDK 1.4 has native support for exception nesting while JDK 1.3 does not have native support for
exception nesting. Since VistALink runs both on JDK 1.3 and 1.4 VistALink has implemented
custom exception nesting framework.

All VistALink base exceptions classes implement exception nesting:

gov.va.med.foundations.utilities.FoundationsException

gov.va.med.foundations.adapter.cci.VistaLinkResourceException

gov.va.med.foundations.security.vistalink.VistaLoginModuleException

October 2003 Developer / System Manager Manual 61
VistALink Version 1.0

Exceptions

10.6 Working With Nested Exceptions
If your code catches one of the above exceptions here are some features that can be expected:

exception.getMessage() returns all nested exception messages in the folling format:
Wrapper exception;
Root cause exception:
java.lang.Exception: Here is my nested exception.
exception.printStackTrace() will print both nested exception messages and
full stack trace:

gov.va.med.foundations.utilities.FoundationsException: Wrapper exception;
 Root cause exception:
 java.lang.Exception: Here is my nested exception.
java.lang.Exception: Here is my nested exception.
 at
gov.va.med.foundations.utilities.test.FoundationsExceptionTest.t2(Foundati
onsExceptionTest.java:106)
 at
gov.va.med.foundations.utilities.test.FoundationsExceptionTest.t1(Foundati
onsExceptionTest.java:109)
 at
gov.va.med.foundations.utilities.test.FoundationsExceptionTest.testConstru
ctorStrExc(FoundationsExceptionTest.java:128)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
 at java.lang.reflect.Method.invoke(Unknown Source)
 at junit.framework.TestCase.runTest(TestCase.Java:154)
 at junit.framework.TestCase.runBare(TestCase.Java:127)
 at junit.framework.TestResult$1.protect(TestResult.Java:106)
 at junit.framework.TestResult.runProtected(TestResult.Java:124)
 at junit.framework.TestResult.run(TestResult.Java:109)
 at junit.framework.TestCase.run(TestCase.Java:118)
 at junit.framework.TestSuite.runTest(TestSuite.Java:208)
 at junit.framework.TestSuite.run(TestSuite.Java:203)
 at junit.swingui.TestRunner$16.run(TestRunner.Java:623)

exception.getNestedException() will return nested exception. Note: do not use this method to unwind
nested exception linked list as there is helper method in ExceptionUtils.getNestedExceptionByClass()
that does just that.

See ExceptionUtils below for more methods that can be used working with exceptions.

10.6.1 ExceptionUtils
gov.va.med.foundations.utilities.ExceptionUtils is a utility class that contains static helper methods
such as getFullStackTrace() and getNestedExceptionByClass() to help unwind nested exception stack
trace.

62 Developer / System Manager Manual October 2003
VistALink Version 1.0

Exceptions

10.6.2 ExceptionUtils:: getFullStackTrace(Throwable e)
ExceptionUtils:: getFullStackTrace(Throwable e) returns full stack trace in case you need to pring
stack trace for exception e to some other place other than system output console such as HTML error
page or Swing text box. To print stack trace to system output console just use
exception.printStackTrace().

Notice we are using Throwable instead of Exception here as this will allow us to print stack trace
even for Errors.

getFullStackTrace method prints out both, nested exception message set as well as full stack trace.
Which means, if you are using this method to return full stack trace, error message will be part of it
and you don’t need to use excetion.getMessage().

10.6.3 ExceptionUtils:: getNestedExceptionByClass()
ExceptionUtils:: getNestedExceptionByClass(Throwable e, Class exceptionClass) returns an
exception if an exception of a class type exceptionClass exists in the exception e nested exception
linked list.

So if your nested exceptions look like this:

(a instance of A) nested within (b instance of B) nested within (c instance of C).

Then a calls:

ExceptionUtils:: getNestedExceptionByClass(c, C) returns c.

ExceptionUtils:: getNestedExceptionByClass(c, B) returns b.

ExceptionUtils:: getNestedExceptionByClass(c, A) returns a.

October 2003 Developer / System Manager Manual 63
VistALink Version 1.0

Appendix

Appendix – Java and M-Side Request / Response
Processing

Java-Side VistALink Request / Response Processing
VistALink implements pluggable Request/Response processing framework on the Java side. See the
collaboration diagram below for an overview.

ApplicationCode

Connection

ConnectionFactory

RequestFactory

ResponseFactory

RequestVO

Generic interfaces that each message type
implements:

RequestFactory
RequestVO
ResponseFactory
ResponseVO

Can either be an XML or
proprietary format.
Use proprieatary format
for large documents to
improve performance.

1.1.1. return Connection

1.1. new

1.2. return Connection

2.1. new

2.1.1. return RequestVO

1. getConnection

2. createSpecificRequest

2.1.1.1. return RequestVO

3. new

3.1. return ResponseFactory

5. read Data

5.1. data

Socket

4.1.1. check request format to return

4.2. send String

4.2.1. receive String

4.1. getRequestString()
4.1.2. return Request String

4. executeInteraction(RequestVO, ResponseFactory)

4.3.4.1. return ResponseVO

ResponseVO

4.3.1. handleFault

4.3.2. new
4.3.3. set data

4.3. parseResponse

4.3.4. return ResponseVO

64 Developer / System Manager Manual October 2003
VistALink Version 1.0

Appendix

Message Types Supported By VistALink
1. System messages that are reserved for VistALink internal communications such as for

heartbeat interactions.

2. Security messages that are reserved for VistALink security module.

3. RPC messages that are designed to handle MUMPS RPC execution.

Applications using VistALink rely on RPC communication to produce RPC messages. Click
http://www.va.gov/vdl/ and see the RPC Broker – Getting Started With the Broker Development Kit
(BDK) document for details. It is possible for applications to plug-in their own extensions to RPC
Response processing by sub-classing the RpcResponseFactory and RpcResponse classes. This is not
recommended, as it introduces tight dependencies between VistALink implementation and custom
extensions. Instead of implementing of reuse by inheritance, it is advisable to implement reuse by
encapsulation. Using this approach, applications use containment for extending VistALink
functionality. Obviously, the VistALink team will maintain the practice of implementing reuse by
inheritance for future VistALink extensions.

M-Side VistALink Request / Response Processing
VistALink provides TCP/IP transport functionality that enable synchronous communication 1) from
non-M based systems to M based VistA servers and 2) from M VistA servers to non-M systems
(typically Java/J2EE based systems).

The communications are in the form of requests.

For requests received by the M based system, VistALink provides 1) a TCP/IP listener to receive the
raw request bytes, 2) a Request Manager to parse, manage and direct these requests to handlers and 3)
two native request handlers, one handles system-type requests, like client heartbeats and close socket
requests and the other handler processes RPC requests.

Other packages can also supply handlers. For example, the VistALink Security supplies a handler
used to process VistA security related requests. (Note: VistALink Security is distributed as part of the
XOB KIDS file.)

VistALink allows request formats to be in (a) XML that conforms to an XML Schema, (b) a
proprietary format (package must supply proprietary parser) or (c) both a and b. Table 8, below,
details these possible formats.

Request
Handler Package

XML
Requests Proprietary Requests

System VistALink (XOBV) Yes No
RPC VistALink (XOBV) Yes Yes
Security VistALink Security (XOBS) Yes No

Table 8: Request Handler Summary

Note: As of April 2003, VistALink supports Java-to-M communication ONLY.

The diagrams on the next two pages of this manual will help the user understand how VistALink processes
requests received by an M server.

October 2003 Developer / System Manager Manual 65
VistALink Version 1.0

http://www.va.gov/vdl/

Appendix

This diagram illustrates the processing of requests in XML format.

 : VistaLinkListener

 : SocketManager : RequestManager : RequestHandler

XML Format Processing

1.1. isProprietaryFormat
1.2. buildXMLGlobalB uffer

 : Socket

 : XMLStringBuffer

 : RequestArray

(wri te res ponse)

 : SAXParser

 : SAXCallbacks

2.3.1. executeB us ines sLogic

(^TMP)

(T̂MP)

always 'false' XML
request format

T here are 3 request handlers:
1) System (close, heartbeat, etc.)

2) Securi ty (user logins, etc.)

3) Remote Procedures

(multiple reads)

always 'false' XML
request format

1. createXMLS tringBuffer

1.3. xm lBufferReference

2. processRequest (xmlBufferReference)

1.1.1. readFromStream
1.2.1. readFromStream

1.2.2. writeNodes

2.3. executeRequest

2.1. doesRequestArrayExists

2.1.1. existenceIndicator

2.2. parseXMLStringBuffer

2.2.3. requestArrayReferenc e

2.3.1.1. readNodes

2.3.2. writeToStream

2.2.1. readNodes

2.2.2. executeCallbacks

2.2.2.2. writeNodes

2.2.2.1. determineRequestType

2.2.2.1.1. requestTypeInfo

66 Developer / System Manager Manual October 2003
VistALink Version 1.0

Appendix

This diagram illustrates the processing of requests in a proprietary format.

 : VistaLinkListener

 : SocketManager : RequestManager

 : P roprietaryParser

 : RequestHandler

1.1. isProprietaryFormat
1.2. determineRequestType

 : RequestArray

Proprietary Format Processing

 : Socket

2.2.1. executeBus ines Logic

(write response)

There are 3 request handlers:
1) System (close, heartbeat, etc.)

2) Securi ty (user logins, etc.)

3) Remote Procedures

(m ultiple reads)

always 't rue' f or
proprie ta ry
re quest format

always 'true' for
proprietary
request format

1. createXMLStirngBuffer

1.4. requestArrayReference

2. processRequest (requestArrayReference)

1.3. parseRequestSt ream

1.3.3. requestArrayReference

1.1.1. readFromStream
1.2.1. readFromStream 2.2. executeRequest

2.1. doesRequestArrayExists

2.1.1. existenceIndicator

1.3.2. writeNodes1.3.1. readFromStream

2.2.2. writeToStream

2.2.1.1. readNodes

October 2003 Developer / System Manager Manual 67
VistALink Version 1.0

Index

Index
Assumptions About the Reader, x
Common Terms, ix
Home Pages

Adobe Acrobat Quick Guide Web Address,
xi

Adobe Systems Incorporated Web Address,
xi

RPC Broker FAQs Home Page Web
Address, xii

SD&D Home Page Web Address, x
Network Connection, 11
PING, 11
Reader, Assumptions About the, x
Reference Materials, x
Schedule/Unschedule Options, 17
Terms, Common, ix
URLs

Adobe Acrobat Quick Guide Web Address,
xi

Adobe Systems Incorporated Web Address,
xi

RPC Broker FAQs Home Page Web
Address, xii

SD&D Home Page Web Address, x
Verify and Test the Network Connection, 11
Web Pages

Adobe Acrobat Quick Guide Web Address,
xi

Adobe Systems Incorporated Web Address,
xi

RPC Broker FAQs Home Page Web
Address, xii

SD&D Home Page Web Address, x

68 Developer / System Manager Manual October 2003
VistALink Version 1.0

	Installing VistALink on a Developer Workstation
	Overview
	Installation
	Distribution Structure
	Installation Instructions
	Supporting Libraries Required by VistALink
	Java Classpath Considerations
	Additional Installation References

	Public VistALink APIs Documented in Javadoc

	Sample Applications
	2.1Overview
	About Installing J2SE Applications
	Set Up and Run the Sample Applications
	JRE Setup
	Java Library Installation
	VistALink Library Installation
	Grant Yourself Kernel Access to the Sample Application
	Install the Sample Application Files
	Set Classpath and Java Locations and Run the Sample Applications
	Optional: To Enable Log4J Logging:
	Optional: JVM Command-Line Parameters – JAXP XML

	Testing the Listener
	Using the Swing Sample Application
	Verifying and Testing the Listener Network Connection
	Troubleshooting
	JRE Version
	Determining If VistALink Libraries Are Installed on the Client Workstation

	Managing the Listener
	Overview
	VistALink Listeners and Ports
	Differences Between Cache and DSM / VMS

	Listener Management for Cache NT and Cache VMS Systems
	Creating / Editing Listener Configurations
	To Start All Configured Listeners
	To Start a Single Unconfigured Listener
	To Stop a Configured or Unconfigured Listener
	How to Schedule Listener Startup at System Startup
	Working With the Foundation Site Parameters File
	Editing Site Parameters

	Listener Management for DSM / VMS Systems
	Setting Up An OpenVMS User Account
	Setting Up A Home Directory for the VistALink Handler Account
	Creating a DCL Login Command Procedure for the VistALink Handler
	Sample DCL Login Command Procedure

	Setting Up and Enabling the TCP/IP Service
	Obtaining an Available Listener Port (for Alpha / VMS systems only)
	Creating the Service
	Enabling and Saving the Service

	Access Control List (ACL) Issues
	
	Example (Contains Recommended Settings)
	1.Review the XMINET (TCP/IP MailMan) VMS account.
	2.Copy XMINET (TCP/IP MailMan) account to a new account with unused UIC
	3.Modify home login directory of the new account.

	How to Control the Number of Log Files Created by the TCP/IP Service
	4.3.7Editing the Foundations / VistALink Site Parameters for OpenVMS

	Java Logging Management
	Using Loggers
	Recommended Loggers
	Specifying the log4j Configuration File
	Preventing Users From Snooping log4j Logs in J2SE Applications

	Security Management
	Authentication Security
	Authentication Timeout Behavior
	RPC Authorization
	Logger Security

	Authenticating and Connecting to VistA
	Overview
	JAAS Overview

	VistALink JAAS Implementation
	VistaLoginModule
	JAAS Login Configuration Overview
	VistALink-Specific JAAS Login Configuration
	Passing the JAAS Login Configuration(s) to Your JVM
	Selecting the JAAS Configuration From an Application
	VistaLoginModule Callback Handlers

	Putting the Pieces Together: VistALink JAAS Login
	Logging in to VistA

	After Successfully Logging In
	Retrieving the VistaKernelPrincipal
	Retrieving the Authenticated Connection From the Principal
	Retrieving User Demographic Information
	Logging Out
	Logging Out of Swing Applications

	Catching Login Exceptions
	VistaLoginModule Exceptions

	Unit Testing and VistALink

	Executing Requests
	Remote Procedure Calls (RPCs)
	Request Processing
	Get an RpcRequest Object: RpcRequestFactory Class
	Set RpcRequest Parameters: Explicit Style
	Set RpcRequest Parameters: List Style
	Other Useful RpcRequest Methods
	Clear Previous Request Parameters
	Set the Message Format (Proprietary or XML)
	Set the RPC Context
	Set the RPC Name
	Set the RPC Client Timeout

	Response Processing
	RpcResponseFactory Class
	RpcResponse Class
	Sample Code
	Parsing RPC Results
	XML Responses

	Utilities
	VistaKernelHash
	XmlUtilities
	XmlUtilities Class
	Sample Code

	AuditTimer

	Exceptions
	Checked and Unchecked Exceptions
	Catching Exceptions
	VistALink Exception Hierarchy
	JAAS Exceptions
	J2EE Connectors Exceptions
	VistaLinkResourceException
	FoundationsException
	VistaLinkFaultException
	Common Exception Interface
	Exception Nesting

	Working With Nested Exceptions
	ExceptionUtils
	ExceptionUtils:: getFullStackTrace(Throwable e)
	ExceptionUtils:: getNestedExceptionByClass()

	Java-Side VistALink Request / Response Processing
	Message Types Supported By VistALink
	M-Side VistALink Request / Response Processing

