

VistALink 1.5

Developer Guide

May 2006

Application Modernization Program
Health Systems Design & Development (HSD&D)

Department of Veterans Affairs

ii VistALink 1.5 Developer Guide May 2006

Revision History

Date Version Description Contacts
5/10/06 1.5 Initial VistALink 1.5 release. Jim Alexander, technical writer

Dawn Clark, project manager

May 2006 VistALink 1.5 Developer Guide iii

Revision History

iv VistALink 1.5 Developer Guide May 2006

Table of Contents

1. Introduction... 1
1.1. About this Guide ... 1
1.2. Additional Resources .. 1

1.2.1. VistALink 1.5 ..1
1.2.2. BEA Systems ...2

1.3. About J2EE Connectors.. 2
1.4. Public VistALink APIs Documentation.. 2
1.5. Sample Applications for J2EE Server... 2

2. Developer Workstation Setup.. 3
2.1. J2EE Development.. 3

2.1.1. IDE...3
2.1.2. J2EE Runtime ..3

2.2. J2SE Development.. 3
2.2.1. IDE...3
2.2.2. J2SE Runtime...3

3. Using VistALink in J2EE ... 5
3.1. Using Station Number (Institution) and Subdivision.. 5

3.1.1. System Locator: Institution-Connector Mapping ..5
3.1.2. Multidivision-Aware Application Code: ConnectionSpec Credentials...................5
3.1.3. Example ...5

3.2. Request Cycle ... 6
3.2.1. Retrieving the Connection Factory ..6
3.2.2. Instantiating a Connection Spec for Re-authentication...................................6
3.2.3. Getting a Connection (Connection Spec) ..7
3.2.4. Executing a Request...7
3.2.5. Closing the Connection..8
3.2.6. Connectivity Failures and Retry Strategies..9

3.3. More about Re-authentication... 9
3.3.1. Overview..9
3.3.2. Connection Specification Classes ..10
3.3.3. Institution/Division Rules for Re-authentication ...11
3.3.4. Application Proxy User..11

3.3.4.1. J2EE Application Proxy Usage Example ..13
3.4. Timeouts ... 13

3.4.1. Socket-Level Forced Timeout..13
3.4.1.1. Setting Socket-Level Timeouts..14
3.4.1.2. Default Socket-Level Timeout...14
3.4.1.3. Changing Socket Timeout as a Multiple of Default Timeout........................14

3.4.2. Graceful (Request-Level) Timeout ..14
3.4.2.1. STOP^XOBVLIB() ...15
3.4.2.2. $$GETTO^XOBVLIB() ..16
3.4.2.3. $$SETTO^XOBVLIB()...16

May 2006 VistALink 1.5 Developer Guide v

Contents

3.4.2.4. Java and M Code RPC Timeout Call Examples ..16
3.5. Institution Mapping... 17

3.5.1. How to Configure Mappings ...17
3.5.2. How to View the Currently Loaded Mappings..17
3.5.3. Retrieving Mappings for Applications...17
3.5.4. Subdivisions...18

3.6. VistALink Java API Reference... 18

4. Executing Requests ... 19
4.1. Remote Procedure Calls.. 19

4.1.1. RPC Security (“B”-Type Option) ..19
4.1.2. RPCs for Use by Application Proxy Users ..19

4.2. Request Processing ... 19
4.2.1. Get an RpcRequest Object: RpcRequestFactory Class..20

4.2.1.1. getRpcRequest() Example ...20
4.2.2. Set RpcRequest Parameters: “Explicit” Style..21

4.2.2.1. Literal RPC Parameter Example..21
4.2.2.2. Reference RPC Parameter Example ..21
4.2.2.3. List RPC Parameter Example: ...22
4.2.2.4. Combination RPC Parameter Example:...22

4.2.3. Set RpcRequest Parameters: “setParams” Style ..22
4.2.3.1. Literal RPC Parameter Example:...23
4.2.3.2. Reference RPC Parameter Example: ...23
4.2.3.3. List RPC Parameter Example: ...23
4.2.3.4. Combination RPC Parameter Example:...23

4.2.4. Specifying Indices for List-Type RPC Parameters..24
4.2.4.1. List RPC Parameter Example (Explicit Index)..24
4.2.4.2. List RPC Parameter Example (Explicit Multi-Level Index)..........................24

4.2.5. Other Useful RpcRequest Methods ...25
4.2.5.1. Clear Previous Request Parameters ...25
4.2.5.2. Set the Message Format (Proprietary or XML) ...25
4.2.5.3. Set the RPC Context ..25
4.2.5.4. Set the RPC Name ...25
4.2.5.5. Set the RPC Client Timeout...26

4.3. Response Processing... 26
4.3.1. RpcResponse Class ..26
4.3.2. Request/Response Example ...26
4.3.3. Parsing RPC Results ..27
4.3.4. XML Responses...28

4.4. How to Write RPCs .. 28
4.4.1. Write Stateless RPCs Whenever Possible..28
4.4.2. When State is Needed ..28

4.4.2.1. Session ID as Temporary Storage Index..29
4.4.2.2. FileMan-Based Lock File ..29

4.4.3. Pitfalls of Using of $JOB in Stateful RPCs ...29
4.4.4. Pitfalls of Global Locking in Stateful RPCs ..29

vi VistALink 1.5 Developer Guide May 2006

 Contents

5. VistALink Exception Reference .. 31
5.1. Checked and Unchecked Exceptions .. 31
5.2. Catching Exceptions ... 32
5.3. VistALink Exception Hierarchy ... 33
5.4. J2EE and J2SE Connectors Exceptions .. 34

5.4.1. VistaLinkResourceException ..34
5.4.2. FoundationsException..34
5.4.3. VistaLinkFaultException ...35
5.4.4. Common FoundationsExceptionInterface ...35
5.4.5. Exception Nesting..35

5.5. Working with Nested Exceptions ... 36
5.5.1. ExceptionUtils..37
5.5.2. ExceptionUtils:: getFullStackTrace(Throwable e) ..37
5.5.3. ExceptionUtils:: getNestedExceptionByClass() ..37

6. Foundations Library Utilities .. 39
6.1. Encryption: gov.va.med.crypto... 39
6.2. J2EE Environment: gov.va.med.environment .. 39

6.2.1. Environment.isProduction()...39
6.2.2. Environment.getServerType() ...40

6.3. Exception: gov.va.med.exception ... 40
6.4. Audit Timer: gov.va.med.monitor.time .. 40

6.4.1. Sample Code ..40
6.5. XML: gov.va.med.xml.. 41

6.5.1. XmlUtilities Class..41
6.5.2. XMLUtilities Example...42

6.6. Network: gov.va.med.net.. 43

7. Using VistALink with J2SE Applications... 45
7.1. Authenticating and Connecting to VistA in Client-Server Mode................................. 45

7.1.1. JAAS Overview ...45
7.2. VistALink JAAS Implementation... 46

7.2.1. VistaLoginModule ...46
7.2.2. JAAS Login Configuration Overview ...46
7.2.3. VistALink-Specific JAAS Login Configuration ...46
7.2.4. Passing the JAAS Login Configuration(s) to Your JVM47
7.2.5. Selecting the JAAS Configuration From an Application48
7.2.6. VistaLoginModule Callback Handlers ..48

7.3. Putting the Pieces Together: VistALink JAAS Login .. 48
7.3.1. Logging in to VistA ...48

7.4. After Successfully Logging In .. 49
7.4.1. Retrieving the VistaKernelPrincipal ..49
7.4.2. Retrieving the Authenticated Connection From the Principal...............................50
7.4.3. Retrieving User Demographic Information ...50
7.4.4. Executing RPCs ...51
7.4.5. Logging Out ...51

7.4.5.1. Logging Out of Swing Applications ..51

May 2006 VistALink 1.5 Developer Guide vii

Contents

7.5. Catching Login Exceptions... 52
7.5.1. VistaLoginModule Exception Hierarchy...52

7.6. Unit Testing and VistALink.. 54

Glossary ... 55

viii VistALink 1.5 Developer Guide May 2006

 Contents

List of Figures

Figure 1. Java Base Exception Classes ... 31
Figure 2. VistALink Exception Hierarchy.. 34

List of Tables

Table 1. Connection Specification Classes... 10
Table 2. Mapping RPC Return Types to VistALink Result String Format 27
Table 3. VistALink Utility Methods... 42
Table 4. VistALink Utility Variables.. 42
Table 5. Demographics Keys and Values ... 51
Table 6. VistALink Login Exceptions .. 53

May 2006 VistALink 1.5 Developer Guide ix

Contents

x VistALink 1.5 Developer Guide May 2006

1. Introduction
1.1. About this Guide
This document is a guide to developing applications that utilize VistALink 1.5. The VistALink
1.5 resource adapter is a transport layer that provides communication between HealtheVet Java
applications and VistA/M servers, in both client-server and n-tier environments. It allows RPCs to
execute on the VistA/M system and return results to the Java enterprise system.

VistALink consists of Java-side adapter libraries and an M-side listener. The adapter libraries use
the J2EE Connector Architecture (J2CA 1.0) specification to integrate Java applications with
legacy systems. The M listener process receives and processes requests from client applications.

The term resource adapter is often shortened in this guide to adapter, and is also used
interchangeably with the term connector.

1.2. Additional Resources
The VistALink website (http://vista.med.va.gov/migration/foundations/index.htm) summarizes
VistALink architecture and functionality and gives status updates for all VistALink products.

1.2.1. VistALink 1.5
When Enterprise VistA Support (EVS) releases VistALink 1.5, the documentation set for
VistALink will be available from the anonymous.software directory at
download.vista.med.va.gov. It will include the following:

• VistALink 1.5 Installation Guide: Provides detailed instructions for setting up, installing,
and configuring the VistALink 1.5 listener on VistA/M servers and the VistALink
resource adapter on J2EE application servers. Its intended audience includes server
administrators, IRM IT specialists, and Java application developers.

• VistALink 1.5 System Management Guide: Contains detailed information on J2EE

application server management, institution mapping, the VistALink console, M listener
management, and VistALink security, logging, and troubleshooting.

• VistALink 1.5 Developer Guide: Contains detailed and background information about

writing code utilizing VistALink.

• VistALink 1.5 Release Notes: A list of all the features included in each VistALink 1.5

release.

• Getting Started With the BDK, Chapter 3: RPC Overview. A short guide on writing RPCs
from the RPC Broker manual.

May 2006 VistALink 1.5 Developer Guide 1

http://vista.med.va.gov/migration/foundations/index.htm

Introduction

1.2.2. BEA Systems
VistALink 1.5 has been tested and is supported on BEA WebLogic Server 8.1 (Service Pack 4)
only. WebLogic product documentation can be found at the following website:
http://edocs.bea.com/.

1.3. About J2EE Connectors
VistALink is a resource adapter that implements and is fully compliant with the J2EE Connector
Architecture Specification 1.0. VistALink is accessed programmatically through the interfaces
specified in the J2EE Connector Architecture specification.

For more information about J2EE Connectors, see the book J2EE
Connector Architecture and Enterprise Application Integration, by
Sharma, Stearns, and Ng (Addison-Wesley Professional). Also see the
J2CA 1.0 Connector Specification and the J2EE 1.3 standard.

1.4. Public VistALink APIs Documentation
The VistALink 1.5 distribution zip file supplies full Javadoc API reference documentation in the
/javadoc folder. The VistALink Javadoc describes the various Java classes that make up the
public VistALink programming API. These APIs may be used under the conditions listed in the
Javadoc documentation. VistALink classes that are not documented in the VistALink Javadoc
are not part of the supported VistALink API.

For more information about the Javadoc documentation format, please see

http://java.sun.com/j2se/javadoc/.

1.5. Sample Applications for J2EE Server
See the J2EE Developer Samples for examples of how to use VistALink with a J2EE server. The
Developer Samples are supplied in the VistALink 1.5 distribution zip file for both J2EE and
J2SE modes.

2 VistALink 1.5 Developer Guide May 2006

http://edocs.bea.com/
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc

2. Developer Workstation Setup
2.1. J2EE Development
2.1.1. IDE
The following libraries should be on the project classpath of your J2EE project in your integrated
development environment (IDE):

• vljConnector-1.5.0.jar
• vljFoundationsLib-1.5.0.jar
• A J2EE 1.3 library (e.g., j2ee.jar, weblogic.jar, MyEclipseIDE's j2ee library, etc.)

The vlj* library jars are provided in the /jars folder of the distribution zip file.

2.1.2. J2EE Runtime
At runtime, additional libraries are required for your J2EE environment. See the VistALink 1.5
Installation Guide and the VistALink 1.5 System Management Guide for more information on
setting up VistALink connectors in a J2EE container.

2.2. J2SE Development
2.2.1. IDE
The following libraries need to be on the project classpath of your J2SE project in your IDE:

• vljConnector-1.5.0.jar
• vljFoundationsLib-1.5.0.jar
• vljSecurity-1.5.0.jar
• A J2EE 1.3 library (e.g., j2ee.jar, weblogic.jar, MyEclipseIDE's j2ee library, etc.)

The vlj* library jars are provided in /jars folder of the distribution zip file.

2.2.2. J2SE Runtime
At runtime, these additional jar files are required for your J2SE application to launch and run:

• j2ee.jar
• jaxen-core.jar
• jaxen-dom.jar
• saxpath.jar
• log4j-1.2.8.jar
• xbean.jar

May 2006 VistALink 1.5 Developer Guide 3

Developer Workstation Setup

The j2ee.jar can be obtained from either the J2EE 1.3.SDK or the weblogic.jar. The others can
be found in the rar/ExplodedVistaLinkRAR/lib folder, in the VistALink 1.5 distribution file.

4 VistALink 1.5 Developer Guide May 2006

3. Using VistALink in J2EE
3.1. Using Station Number (Institution) and Subdivision
VistALink asks application code to provide VHA institution station numbers in two situations,
for different purposes: system location and multi-division awareness. Because these two modes
of use are separate, the meaning of station number is “overloaded.” The two modes are described
in the sections below.

3.1.1. System Locator: Institution-Connector Mapping
Your code must provide a station number to retrieve a connector JNDI name from VistALink's
institution-mapping API. Lacking anything better, the station number is used as a location
designator for a particular system.

Each connector has a primaryStation attribute, which is configured by the J2EE
administrator. On the M system, this value should exactly match the DEFAULT INSTITUTION
value in the Kernel Systems Parameter File. VistALink uses primaryStation to confirm that a
connector is accessing the correct M system: if the two values don't match, connections are
rejected. The primaryStation attribute is also the mapping source between station numbers
and connector JNDI names.

In 99 percent of the cases, this attribute is all-numeric (e.g., "523"). When asked for the JNDI
name for a station number with a subdivision suffix, such as "523A", the institution mapping
API will return a JNDI name mapped to “523”. The API handles some special cases too. For
example, "5239" would be a nursing home at "523" where "9" is the nursing home indicator.

3.1.2. Multidivision-Aware Application Code: ConnectionSpec Credentials
Your code must also use the station number to create a connection spec, which it then uses to
obtain a VistALink connection. When your code executes a remote procedure call (RPC), the
station number specified in the connection spec is passed to M to populate the variable DUZ(2)
on the M system. On M systems, DUZ(2) is used to make applications multidivision-aware, to
give the right view of the data. On merged systems, for example, an end-user might only see the
set of patients matching the station number specified in their DUZ(2) (e.g., "523B").

Only one value can be set into DUZ(2) at a time. So, if you construct a connection spec (e.g.,
"connSpec = new VistaLinkVpidConnectionSpec(division, vpid)") and pass in
"523B", VistALink sets DUZ(2) on the M side to "523B". RPCs are then executed under that
setting (if it is granted as a permissible subdivision to the end-user.)

3.1.3. Example
In a merged site, where an end-user has access to "636A" but not to "636", the institution
mapping lookup for "636A" will return the connector whose primaryStation attribute is
"636". If you create a connection spec and connection to execute an RPC and specify "636A",

May 2006 VistALink 1.5 Developer Guide 5

Using VistALink in J2EE

this value will be set into DUZ(2) on the M side. The RPC will execute with multi-division
awareness, i.e., that the current institution is "636A".

3.2. Request Cycle
Using a J2CA connector such as VistALink in a J2EE environment to execute requests (RPCs)
involves the following sequence of steps:

1. Retrieve a particular VistALink connector's connection factory from JNDI

2. Instantiate a ConnectionSpec to use for re-authentication over the connection

3. Get a connection from the connection factory

4. Execute a request over the connection

5. Close the connection.

These steps are discussed in more detail in the sections below.

3.2.1. Retrieving the Connection Factory
To retrieve a connection factory from JNDI, you need to know the JNDI name of the connection
factory. Each VistALink connector going to a different destination will have a different JNDI
name. For this example, assume that the JNDI name of the connection factory is
"vlj/testconnector."

To retrieve the connection factory, make the following calls to JNDI:

Context ic = new InitialContext();
String jndiName = "vlj/testconnector";
VistaLinkConnectionFactory cf = null;
// cast JNDI object to VistaLinkConnectionFactory
cf = (VistaLinkConnectionFactory) ic.lookup(jndiName);

Note that the object retrieved from the JNDI must be cast to the VistaLinkConnectionFactory
class.

If your application hard-codes JNDI connection factory names, you may want to use the J2EE
resource-ref mechanism to loosely couple a hard-coded JNDI name in your application
source code to an administrator-modifiable mapping in your application deployment descriptors.

More likely, however, in a VA environment, your application would retrieve JNDI connection
factory names dynamically, based on VA facility station number. See the “Institution Mapping”
section later in this chapter, which describes how to connect to a particular VA site by getting the
JNDI name for a connector's connection factory.

3.2.2. Instantiating a Connection Spec for Re-authentication
Before retrieving a connection from the connection factory object, you need to instantiate a
connection spec. The connection spec is used to pass re-authentication information to the

6 VistALink 1.5 Developer Guide May 2006

 Using VistALink in J2EE

connection, identifying the user to run the request under on the target VistA M system. (For a
complete discussion of VistALink’s re-authentication mechanism, see “More about Re-
authentication” below, as well as the titled “Security” in the VistALink System Management
Guide.)

The following connection specs are provided with VistALink for general application use:

• VistaLinkVpidConnectionSpec(division, vpid)
• VistaLinkDuzConnectionSpec(division, duz)
• VistaLinkAppProxyConnectionSpec(division, appProxyName)

To instantiate a VistaLinkVpidConnectionSpec, for example:

String division="523A";
String vpid = "0000002987654321V654321000000";
VistaLinkVpidConnectionSpec connSpec = new
 VistaLinkVpidConnectionSpec(division, vpid);

For more information on connection specs, see the section “Connection Specification Classes” in
this document.

3.2.3. Getting a Connection (Connection Spec)
The following code retrieves a VistALink connection from a given connection factory:

VistaLinkConnection myConnection = null;
// cast connection factory getConnection to VistaLinkConnection
myConnection = (VistaLinkConnection) cf.getConnection(connSpec);
myConnection.setTimeOut(10000); // set request timeout to 10 seconds

Every connection has a default timeout, which is the time the J2EE side of the connection waits
for a response from the M system when executing an RPC. You can manually increase the
timeout if you expect the RPCs to take a long time (as in the example above).

3.2.4. Executing a Request
Once you have a connection, you can execute a request over the connection. In general the steps
to execute a request are:

1. Create an RpcRequest object
2. Set the RpcRequest name of the RPC to execute (RpcRequest.setRpcName)
3. Set the type of request transmission format to use (we recommend proprietary in all

cases, rather than XML)
4. Assert an RpcRequest authorization context (RpcRequest.setRpcContext)
5. Set request parameters (if the request has any)
6. Execute the request
7. Process the results.

May 2006 VistALink 1.5 Developer Guide 7

Using VistALink in J2EE

For example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
vReq.setRpcName("XOBV TEST PING");
vReq.setUseProprietaryMessageFormat(true);
vReq.setRpcContext("XOBV VISTALINK TESTER");
RpcResponse vResp = myConnection.executeRPC(vReq);
String results = vResp.getResults();

More complete information on setting up a request, passing parameters to the request, and
processing the response, is provided in the “Executing Requests” section.

3.2.5. Closing the Connection
The final step in executing a request is to close the connection. Doing this does not close the
physical connection in J2EE; instead, it returns the connection to the connection pool it came
from, for possible re-use on a subsequent request.

It is strongly recommended that you close the connection in a final block surrounding all of the
code, beginning at getConnection(). Otherwise, errors will result in leaked connections that
have not been returned to the pool, possibly causing the pool to run out of available connections
for other callers.

The following example shows the complete request cycle, including closing the connection.

VistaLinkConnection myConnection = null;
String results = null;

try {
 Context ic = new InitialContext();
 String jndiName = " vlj/testconnector";
 VistaLinkConnectionFactory cf = (VistaLinkConnectionFactory)
 ic.lookup(jndiName);
 myConnection = (VistaLinkConnection) cf.getConnection(connSpec);
 myConnection.setTimeOut(10000); // set 10 second socket timeout

 RpcRequest vReq = RpcRequestFactory.getRpcRequest();
 vReq.setUseProprietaryMessageFormat(true);
 vReq.setRpcName("XOBV TEST PING");
 vReq.setRpcContext("XOBV VISTALINK TESTER");
 RpcResponse vResp = myConnection.executeRPC(vReq);
 results = vResp.getResults();

} catch (VistaLinkFaultException e) {
 // ...
} catch (NamingException e) {
 // ...
} catch (ResourceException e) {
 // ...
} catch (FoundationsException e) {
 // ...
} finally {

8 VistALink 1.5 Developer Guide May 2006

 Using VistALink in J2EE

 if (myConnection != null) {
 try {
 myConnection.close();
 } catch (ResourceException e) {
 // ...
 }
 }
}

3.2.6. Connectivity Failures and Retry Strategies
During an executeRPC()call, connectivity to the VistA system can fail due a network failure
or anything else that breaks connectivity. The request’s implementation of the
VistaLinkRequestRetryStrategy interface determines whether VistALink automatically
retries the request or not.

Connectivity can fail at any point while executing the original request. If it does, most or all of
the work of the original request may have been performed already. You should take this into
account when considering what retry strategy to use for your requests -- for example, whether a
an RPC retry could potentially add a second instance of a particular entry to a file.

By default, the implementation class VistaLinkRequestRetryStrategyAllow is set as the
retry strategy for a request. Its single method, execute(), returns “true,” causing VistALink to
attempt to obtain a new connection and retry the request, exactly once.

In addition to VistaLinkRequestRetryStrategyAllow, an additional implementation
class, VistaLinkRequestRetryStrategyDeny, is supplied. Its single method, execute(),
returns “false.” You can use this class in cases where you never want the request to be retried.

You can also supply your own implementation class for the VistaLinkRequestRetryStrategy
interface that uses its own logic to determine whether to return “true” or “false” to allow or deny
the retry attempt.

For example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
vReq.setRpcName("XOBV TEST PING");
vReq.setRpcContext("XOBV VISTALINK TESTER");
vReq.setRetryStrategy(new VistaLinkRequestRetryStrategyDeny());
RpcResponse vResp = myConnection.executeRPC(vReq);
String results = vResp.getResults();

3.3. More about Re-authentication
3.3.1. Overview
When a connection is used by an application, VistALink uses re-authentication for the following
reasons:

May 2006 VistALink 1.5 Developer Guide 9

Using VistALink in J2EE

• The connection proxy user used by the adapter to connect to M should not have
privileges

• Most RPCs need to run in the context of specific end-users.

Re-authentication is a lightweight security context switch from the application server adapter’s
user identity to the actual end-user identity.

The architecture of VistALink makes the assumption that the identity of the end-user has already
been authenticated (verified) by the calling application. Therefore VistALink does not attempt to
authenticate the end-user’s identity. Instead, the re-authentication process matches the end-user
identity already established by the calling application with a matching VistA New Person file
entry.

When retrieving a VistALink connection from a connection factory, the application supplies end-
user credentials as part of the connection specification. These credentials are used to switch
security context on the M side, to re-authenticate the connection. This re-authentication process
establishes the correct end-user environment on the M server (VPID, DUZ, etc) for the duration
of the connection’s use.

3.3.2. Connection Specification Classes
To link identities, the application selects one of the following connection specifications to
retrieve a connection:

Table 1. Connection Specification Classes
Connection Specification class Required Credentials
VistaLinkDuzConnectionSpec Division; known DUZ value of a specific end-user

(to be deprecated in favor of VPID)
VistaLinkVpidConnectionSpec Division; known VPID value of a specific end-user
VistaLinkAppProxyConnectionSpec Division; name of a user of the special user type

"Application Proxy"

VPID is the connection specification expected to be used in most production scenarios. Whatever
end-user authentication mechanism is used by a HealtheVet -VistA application, the application
should be able to obtain the VPID for a given end-user as an output from the authentication
process. During RPC execution, when the end-user is authenticated, the J2EE application can use
the VPID as a way to identify the end-user to any VistA M system. Kernel patch XU*8.0*309 is
required to support the VPID connection specification on M-VistA systems.

DUZ (DuzConnectionSpec) is the primary re-authentication mechanism until the VPID
infrastructure is fully rolled out. At that point DuzConnectionSpec will be deprecated, and
VpidConnectionSpec will be the primary mechanism. In both cases, it is expected that the
login will have been performed already through a VHA-approved authentication mechanism, and
that the authentication mechanism will make the DUZ or VPID available for use by the
application.

10 VistALink 1.5 Developer Guide May 2006

 Using VistALink in J2EE

The Application Proxy connection specification is designed to be used in cases where the RPC
should run on the Kernel/M system under the identity of an application, rather than an end-user.

3.3.3. Institution/Division Rules for Re-authentication
For every connection spec, a division must be passed: the division parameter is mandatory. This
requirement ensures that the division requested for a connection on behalf of a user matches the
division under which the user's request is executed on the M system. It also helps to ensure that
RPCs are not executed on the wrong M system.

All applications should already be multidivision-aware, so the VistALink requirement that an
application know the end-user’s division should be no additional burden to applications. This
value is set by Kernel into DUZ(2) for the re-authenticated end-user.

The value to pass for the division parameter for any connection specification is the division
station number, e.g., "523" or "523BZ". This is the value found in field 99 (Station Number) of
the corresponding entry in the Institution File on the M system.

The following applies to user-based connection specs (VistaLinkVpidConnectionSpec and
VistaLinkDuzConnectionSpec) on the M side:

• If the end-user's DIVISION (#200.02) multiple of their New Person file entry is empty,
the division passed in with the connection spec must be the station number of the division
set into the DEFAULT INSTITUTION (#217) field of the KERNEL SYSTEM
PARAMETERS (#8989.3) file entry for the site.

• If an end-user has one or more divisions specified in the DIVISION (#200.02) multiple of
their New Person file entry, the division passed in with the connection spec must be the
station number for one of the divisions present in that multiple.

For the VistaLinkApplicationProxyConnectionSpec, the division must be a division
supported on the computing system being connected to. In both cases, if the division passed does
not meet the conditions above, re-authentication fails, and a
SecurityDivisionDeterminationFaultException is returned to the calling application.

3.3.4. Application Proxy User
Kernel patch XU*8.0*361 provides the following public API for application proxy user support:

• CREATE(NAME,FMAC,OPT) ;Create an APPLICATION PROXY user
For a description of this API, see the Kernel Programmer Manual on the Kernel API Web
site (http://vista.med.va.gov/kernel/apis/index.shtml) or the VistA Document Library
(http://www.va.gov/vdl/Infrastructure.asp?appID=10).

VistALink uses patch 361 functionality to implement a new re-authentication connection spec,
VistaLinkAppProxyConnectionSpec. With this, re-authentication can be performed using
an application proxy account on the M system, rather than under an end-user account.

May 2006 VistALink 1.5 Developer Guide 11

http://vista.med.va.gov/kernel/apis/index.shtml
http://www.va.gov/vdl/Infrastructure.asp?appID=10
http://www.va.gov/vdl/Infrastructure.asp?appID=10

Using VistALink in J2EE

The Application Proxy connection specification is expected to be used in either of the following
special situations:

• The J2EE end-user does not have a user account on the M system on which an RPC is to
be executed – i.e., when a service uses VistALink from an EJB (when an end-user is not
practical)

• It is not appropriate for the RPC to execute under the identity of a particular end-user

To use the Application Proxy connection, you should understand the following:

• VistaLinkAppProxyConnectionSpec(String division, String appProxyName) is
the constructor for the new connection spec.

• Kernel patch XU*8*361 supports the new functionality.

• SecurityIdentityDeterminationFaultException is thrown if re-authentication fails.

• For the division, you can specify any division that is valid for the site. Division checking
is done against what is a valid division for the site, not against user-specific division
settings.

If your functionality is not multi-divisional, you can use "primary station" for the M
system. This is the station number in the DEFAULT INSTITUTION field of the Kernel
System Parameters file in the M account in question.

Note: According to Infrastructure & Security Services, a valid division for a Kernel/M
site is currently any division whose numeric M value (e.g., when “plussed”) (1) equals
the DEFAULT INSTITUTION station number, and (2) is not marked inactive in the
Institution file at the site.

• A "tester" application proxy user is distributed with VistALink, and added to the New
Person file during the installation post-init. The proxy user is named
XOBVTESTER,APPLICATION PROXY.

• The VistALink sample Web application demonstrates the use of all connection specs,
including VistaLinkAppProxyConnectionSpec. The sample application makes use of
the XOBVTESTER,APPLICATION PROXY user created during the VistALink
installation post-init.

The M example of adding an application proxy user is shown below. In this case, the proxy name
is passed into the function; no FileMan access code is added to the user; and the [XOBV
VISTALINK TESTER] B-type option is added to the secondary menu of the proxy user:

ADDPROXY(XOBANAME) ; add application proxy if not present
 ; depends on XU*8*361
 NEW XOBID
 ;
 SET XOBID=$$CREATE^XUSAP(XOBANAME,"","XOBV VISTALINK TESTER","")

12 VistALink 1.5 Developer Guide May 2006

 Using VistALink in J2EE

 IF (+XOBID)>0 DO
 . ; actions if successfully added
 IF (+XOBID)=0 DO
 . ; actions if proxy user was already present
 IF (+XOBID)<0 DO
 . ; actions if error – could not add user for some reason
 QUIT

3.3.4.1. J2EE Application Proxy Usage Example
StringBuffer results = new StringBuffer();
String appProxyName = "XOBVTESTER,APPLICATION PROXY";
String division="11000";

try {

 VistaLinkConnectionSpec connSpec = new

VistaLinkAppProxyConnectionSpec(division, appProxyName);
 String jndiName = InstitutionMappingDelegate.

getJndiConnectorNameForInstitution(division);
 Context ic = new InitialContext();
 VistaLinkConnectionFactory cf = (VistaLinkConnectionFactory)
 ic.lookup(jndiName);
 VistaLinkConnection myConnection = (VistaLinkConnection)
 cf.getConnection(connSpec);
 RpcRequest vReq = RpcRequestFactory.getRpcRequest();
 vReq.setUseProprietaryMessageFormat(true);
 vReq.setRpcContext("XOBV VISTALINK TESTER");
 vReq.setRpcName("XOBV TEST PING");
 RpcResponse vResp = myConnection.executeRPC(vReq);
 results.append("<p>" + rpcName + " Results: " +
 vResp.getResults() + "");
} catch (Exception e) {
 // ...
} finally {
 if (myConnection != null) {
 try {
 myConnection.close();
 } catch (ResourceException e) {
 //...
 }
 }
}

3.4. Timeouts
3.4.1. Socket-Level Forced Timeout
A simple socket timeout capability is provided so that the Java side of the connection can simply
time out the M side of the connection if an RPC is taking too long to execute. If the timeout is
reached, the socket will drop the connection to M. On the M side, the RPC will terminate
ungracefully.

May 2006 VistALink 1.5 Developer Guide 13

Using VistALink in J2EE

For RPCs that are known to be long-running, you may want to use the socket timeout in
conjunction with a graceful RPC timeout. Set the socket timeout slightly longer than you set the
graceful RPC-based request-level timeout. (See the “Graceful (Request Level) Timeout” section
below for more information about how to implement graceful timeouts.)

3.4.1.1. Setting Socket-Level Timeouts
The socket-level timeout can be set in two ways:

• On the connection object, the setTimeOut() method will set a socket timeout, in
milliseconds, that will be used for all RPCs executed over the connection. For example:

// set timeout for all requests sent over this connection to 10 seconds
myConnection.setTimeOut(10000);

• On the RPC request, the socket timeout can be set for a single request:

// set request timeout to 10 seconds, for this request only
myRpcRequest.setTimeOut(10000);

3.4.1.2. Default Socket-Level Timeout
All connectors are configured with a default socket timeout, so that if a request takes infinitely
long to complete, a socket timeout will eventually always be triggered.

Administrators can selectively configure (tune) the default socket timeout for each connector,
depending on the WAN performance and system performance for reaching any given M system.
The default timeout is set in the gov.va.med.vistalink.connectorConfig.xml file. (See the
section “Connector Settings,” in the VistALink 1.5 System Management Guide.)

3.4.1.3. Changing Socket Timeout as a Multiple of Default Timeout
If you are going to programmatically adjust the timeout, you may want to obtain the current
timeout for the connector first, multiply it by a factor, and then set the new timeout. This takes
advantage of any tuning the administrators may have done for a particular connector.

Example:

// increase timeout by a factor of two
int timeout = myConnection.getTimeOut();
myConnection.setTimeOut(timeout*2);

3.4.2. Graceful (Request-Level) Timeout
In addition to using a socket timeout, the calling Java application can also pass a graceful
timeout value to the RPC it is going to execute. To implement a graceful timeout, the RPC code
that is executing must check whether it has timed out against this timeout value. A set of M APIs

14 VistALink 1.5 Developer Guide May 2006

 Using VistALink in J2EE

is provided for applications to check whether their RPC has timed out, based on the value passed
by the calling application with the request.

Implementing a graceful timeout requires a delicate synchronization process between the
graceful timeout, the socket timeout, and the RPC execution on the M side. Therefore, the
graceful timeout is only recommended if your application needs more than what the socket
timeout provides.

To implement a graceful timeout:

1. Java-side: The calling application sets the request level RpcClientTimeout property,

with RpcRequest.setRpcClientTimeOut(numberOfSeconds).

2. Java-side: Make sure the current connection-level socket timeout (in milliseconds)
evaluates to a longer period than the graceful timeout (in seconds). Otherwise the socket
may timeout anyway before the graceful timeout is reached. For example, if you set
RpcRequest.setRpcClientTimeOut(10), you could do
myConnection.setTimeOut(15000), i.e., 15 seconds.

3. M-side RPC: The RPC code should periodically check (e.g., if code is executing an
iterative loop) if the RPC has exceeded the client timeout by calling
$$STOP^XOBVLIB(). Return values from $$STOP^XOBVLIB are: “1” (application
should stop processing, timeout has been exceeded) or “0” (continue processing).

4. Java-side: The calling application can catch the RpcTimeOutFaultException in the

try/catch code surrounding its RPC execute call. If the calling application catches this
exception when executing an RPC, it means the M-side RPC checked STOP^XOBVLIB,
was notified that a timeout had occurred, and did not reset the timeout value.

Note: If the RPC continues processing without resetting the timeout after receiving a timeout
indicator from $$STOP^XOBVLIB, the RPC may complete, but VistALink will return an
RpcTimeOutFaultException to the client.

3.4.2.1. STOP^XOBVLIB()
Used by the application to determine if processing should stop.

Input variables: (none)

Output variables: Return value. “1” is an indicator to stop processing; “0” is an indicator to
continue processing. I “1” is returned, and internal “timed out” indicator is also set.

Note: If you call STOP^XOBVLIB and it returns 1, a fault will be returned to the calling Java
application. This will happen even if your RPC code completes, unless you call
SETTO^XOBVLIB to increase the timeout and then call STOP^XOBVLIB to clear the "timed
out" indicator based on the higher timeout value.

May 2006 VistALink 1.5 Developer Guide 15

Using VistALink in J2EE

3.4.2.2. $$GETTO^XOBVLIB()
Get the current timeout value (default = 300 seconds). An application would call this to obtain
the current timeout value.

Output Variable: Return value, which is the timeout value, if it exists (in seconds), or the
default of 300 seconds.

3.4.2.3. $$SETTO^XOBVLIB()
Override the current "graceful" timeout setting received from the client via
RpcRequest.setRpcClientTimeout(int) or the default.

It is suggested that you call STOP^XOBVLIB immediately after resetting the timeout value, in
order to reset the current timeout indicator based on the new timeout value.

Input Variable: TO. TO is the RPC timeout value in seconds. This is always the total number of
seconds since the RPC began; it is not an increment from the current time.

Output Variable: Return value. The function sets the RPC timeout value (in seconds) and
returns a “1” to indicate value successfully reset or 0 if not successful.

For example, if the M-side RPC wants “more time” after getting a “1” from
$$STOP^XOBVLIB, it can use the $$SETTTO call to do so. However, this is risky, because the
socket-level timeout may time out the connection anyway, particularly if the calling application
set the socket-level timeout just higher than it set the graceful RPC timeout.

To add “more time” (though it risks running into a socket-level timeout), an RPC could get the
current timeout value ($$GETTO^XOBVLIB), increase it, and then reset the higher value with
$$SETTO^XOBVLIB. It should also call $$STOP^XOBVLIB immediately after calling
$$SETTO, in order to reset the "timed out" indicator based on the new value. $$STOP needs to
be called again because the new $SETTO value may not have been large enough. The timeout
check is always calculated from the start of the RPC, not the reset.

3.4.2.4. Java and M Code RPC Timeout Call Examples

Java-side example:

// increase socket timeout by a factor of two and
// use the original socket timeout as RPC client timeout
int timeout = myConnection.getTimeOut();
myConnection.setTimeOut(timeout*5);
myConnection.setRpcClientTimeOut(timeout/1000);

M/VistA-side example:

16 VistALink 1.5 Developer Guide May 2006

 Using VistALink in J2EE

...
F S IEN=$O(ARR(IEN)) Q:IEN="" DO I $$STOP^XOBVLIB() DO CLEANUP QUIT
 . DO PROCESS(IEN)
...

3.5. Institution Mapping
HealtheVet VistA applications need to be able to dynamically retrieve connectors to various
VistA systems. The connecting systems to will change over time, so hard-coding of connector
references is out of the question.

VistALink provides an Institution Mapping facility so that administrators deploying VistALink
connectors can map each connector to a specific VHA institution, using that institution's station
number. HealtheVet VistA applications can then retrieve the JNDI name for a connector to a
particular institution, using the institution mapping facility. This utility is in the
gov.va.med.vistalink.institution package.

There is no requirement to use this utility to use VistALink. The utility merely provides a way
for administrators to associate station numbers with JNDI names, and for runtime code to
retrieve the mapping.

3.5.1. How to Configure Mappings
Each connector is configured in a file named gov.va.med.vistalink.connectorConfig.xml. Each
connector's settings are stored in a unique <connector> element in that file. The station number
and JNDI name it maps to are both XML attributes of the <connector> element.

Refer to the VistALink 1.5 Installation Guide and the VistALink System Management Guide for a
complete description of how to configure VistALink's institution mappings for each VistALink
connector.

3.5.2. How to View the Currently Loaded Mappings
You can view the currently loaded institution mappings for a given server by using the
Institution Mappings tab of the VistALink console. Refer to the VistALink 1.5 System
Management Guide for a complete description of the VistALink console.

3.5.3. Retrieving Mappings for Applications
A static method, getJndiConnectorNameForInstitution, is provided in the class
gov.va.med.vistalink.institution.InstitutionMappingDelegate. This class provides application
access to the institution mappings. For example:

String stationNumber = 500;
String jndiConnectorName = null;
try {
 jndiConnectorName =

May 2006 VistALink 1.5 Developer Guide 17

Using VistALink in J2EE

 InstitutionMappingDelegate.getJndiConnectorNameForInstitution(
 stationNumber);
} catch (InstitutionMappingNotFoundException e) {
// take some action
} catch (InstitutionMapNotInitializedException e) {
// take some action
}

3.5.4. Subdivisions
When retrieving the JNDI name for a particular station number, you should pass the exact
subdivision you are working with to the getJndiConnectorNameForInstitution() call
(e.g., "523A", "523B", or "523"). This API determines the correct connector associated with a
given station number, even if the station number parameter passed to it is a subdivision (usually
but not always signified by the presence of alpha characters after the numeric portion of the
station number).

3.6. VistALink Java API Reference
For a complete reference to all of the Java-side VistALink interfaces, classes, methods and
exceptions, please see the Javadoc API documentation provided in the VistALink 1.5 distribution
file.

18 VistALink 1.5 Developer Guide May 2006

4. Executing Requests
4.1. Remote Procedure Calls
A remote procedure call (RPC) is a defined call to M code that runs on an M server. Through the
RPC Broker, a client application can make a call to the M server and execute an RPC on the M
server. This is the mechanism through which a client application can:

• Send data to an M server

• Execute code on an M server

• Retrieve data from an M server

An RPC can take optional parameters to do a task and then return either a single value or an
array to the client application.

For detailed information on RPCs, please refer to Getting Started With
the Broker Development Kit (BDK) and/or the RPC Broker Technical
Manual. You can find both publications at http://www.va.gov/vdl/.

4.1.1. RPC Security (“B”-Type Option)
All RPCs are secured with an RPC context (a "B"-type option). The end-user on whose behalf an
RPC is executed must have the “B”-type option associated with the RPC in their menu tree.
Otherwise an exception is thrown.

For more information on RPC security, see Getting Started with the
BDK, Chapter 3 (Extract): RPC Overview, which is bundled in the
VistALink distribution, as the file xwb1_1p13dg-rpc_extract.pdf.

4.1.2. RPCs for Use by Application Proxy Users
RPCs must be explicitly marked as supporting execution by an application proxy user, in order to
be used by one. The new field APP PROXY ALLOWED (#.11) in the REMOTE PROCEDURE
file (#8994) must be marked “YES.” RPCs should only be marked for application proxy use if:

• The business logic behind the RPC is valid when the DUZ represents an application
proxy user (rather than end-user)

• The application expects to be executed by an application proxy user.

4.2. Request Processing
During interactions with M from Java, developers use the RpcRequest object. The
RpcRequest object encapsulates the data that will be sent to M to execute an interaction, i.e.
the RPC name, RPC parameters, and RPC context. The RpcRequest object is constructed

May 2006 VistALink 1.5 Developer Guide 19

http://www.va.gov/vdl/

Executing Requests

using the RpcRequestFactory object. The RPC parameters are accessed through the
RpcRequest objects via the clearParams(), getParams() and setParams() methods.

4.2.1. Get an RpcRequest Object: RpcRequestFactory Class
The RpcRequest class represents a request from Java to M. As the transport format, it permits
the use of either XML or a proprietary format. The proprietary format is the default and is
recommended because it is faster. This class also exposes methods for specifying Rpc Name,
Rpc Context and the parameters used by M to execute the RPC.

The RpcRequestFactory class is responsible for creating instances of RpcRequest. In order
to create an RpcRequest, the developer must call the static getRpcRequest method on this
class. In the example shown below, getRpcRequest is overloaded with three declarations:

public static RpcRequest getRpcRequest() throws FoundationsException

This method is used to create a default RpcRequest with no specified Rpc Name or Rpc
Context. You must specify the Rpc Context and the Rpc Name on the RpcRequest
object before you can use this object in an interaction. Refer to javadoc on RpcRequest for
more information:

public static RpcRequest getRpcRequest(String rpcContext) throws
FoundationsException

This method is used to create a RpcRequest with the specified Rpc Context. You must
specify the Rpc Name on the RpcRequest object before you can use this object in an
interaction.

public static RpcRequest getRpcRequest(String rpcContext, String rpcName)
throws FoundationsException

Refer to the Javadocs on RpcRequest for more information.

This method is used to create a RpcRequest with the specified Rpc Context and the Rpc
Name. You may still specify another Rpc Context and Rpc Name on this object. Refer to the
JavaDocs on RpcRequest for more information.

4.2.1.1. getRpcRequest() Example

RpcRequest vReq = null;

//The Rpc Context
String rpcContext = "XOBV VISTALINK TESTER";

//The Rpc to call
String rpcName = "XWB GET VARIABLE VALUE";

// Construct the request object
try{

vReq = RpcRequestFactory.getRpcRequest(rpcContext, rpcName);

20 VistALink 1.5 Developer Guide May 2006

 Executing Requests

} catch(FoundationsException e) {
 // process exception as needed
}

4.2.2. et RpcRequest Parameters: “Explicit” Style
uest object. For convenience, the

 explicit style, the method of passing RPC parameters corresponds very closely to the
lls.

PC parameter VistALink
ram type

Java value type

S
There are two ways of passing RPC parameters to an RpcReq
first method is referred to as “explicit” style, the second method as “setParams” style.

In
underlying RPC parameters. The RPC Broker has three input parameter types for RPC ca
These map to VistALink RpcRequestParam parameter types as follows:

R
type RpcRequestPa

Literal String "string"
Reference "ref" String
List "array" ecify array indices yourself; supports

s a

List (Sp
non-integer, negative, or multi-level indices)

Map or Set (index automatically generated a
single-level, integer, sequence)

To pass parameters into an RpcRequest, you should retrieve the RpcRequest's mutable

he

• position: the expected RPC parameter list position where the RPC expects to see the RPC

• e "string", "ref" or "array" (to match the expected RPC parameter type)

the object
e.

4.2.2.1. Literal RPC Parameter Example

RpcRequestParam object, accessible by RpcRequest.getParams(). Then, call
setParam() on that object to define each RPC parameter:

void setParam(int position, String type, Object value)

T parameters to this call are:

parameter

type: can b

• value: an object that is the value of the RPC parameter. For "string" or "ref" types,
should be a string. For "array" types, the object should implement the Map, List or Set interfac

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
vReq.getParams().setParam(1, "string", "I am a string");

4.2.2.2. Reference RPC Parameter Example

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
vReq.getParams().setParam(1, "ref", "DTIME");

May 2006 VistALink 1.5 Developer Guide 21

Executing Requests

4.2.2.3. List RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList nums = new ArrayList();
nums.add("3");
nums.add("5");
nums.add("4");
nums.add("1");
nums.add("7");
nums.add("8");
nums.add("2");
nums.add("6");
nums.add("9");
vReq.getParams().setParam(1, "array", nums);

4.2.2.4. Combination RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList nums = new ArrayList();
nums.add("3");
nums.add("5");
nums.add("4");
nums.add("1");
nums.add("7");
nums.add("8");
nums.add("2");
nums.add("6");
nums.add("9");
vReq.getParams().setParam(1, "array", nums);
vReq.getParams().setParam(2, "string", "I am a string");
vReq.getParams().setParam(3, "ref", "DTIME");

4.2.3. Set RpcRequest Parameters: “setParams” Style
A second style of passing RPC parameters for an RPC into an RpcRequest object is called the
“setParams” style. This method offers a small amount of abstraction from the underlying RPC, although
parameters still must correspond directly to what is expected by the RPC being invoked.

With the setParams style, you create an object that implements the List interface and holds each of the
parameters as an object entry in the list. Add each parameter to the List as an object value, and then use
RpcRequest.setParams(List) to pass the RPC parameters to the request..

The RpcRequest object processes the List internally extracting the RPC parameter characteristics for
the request as follows:

• position: Determined by the order each object was added to the List. The first object added
becomes the first RPC parameter, the second becomes the second, and so forth.

• type:

o If an object found in the List is a String, it is passed as an RPC literal parameter.

22 VistALink 1.5 Developer Guide May 2006

 Executing Requests

o If an object found in the List implements the Map, List, or Set interfaces, it is passed as an
RPC List parameter.

o If an object found in the List is an instance of the special RpcReferenceType class, it is
passed as an RPC reference parameter.

• value: The value for the RPC parameter is simply the object added to the List for each parameter.

4.2.3.1. Literal RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
params.add("I am a string");
vReq.setParams(params);

4.2.3.2. Reference RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
params.add(new RpcReferenceType("DTIME"));
vReq.setParams(params);

4.2.3.3. List RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
ArrayList nums = new ArrayList();
nums.add("3");
nums.add("5");
nums.add("4");
nums.add("1");
nums.add("7");
nums.add("8");
nums.add("2");
nums.add("6");
nums.add("9");
params.add(nums);
vReq.setParams(params);

4.2.3.4. Combination RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
ArrayList nums = new ArrayList();
nums.add("3");
nums.add("5");
nums.add("4");
nums.add("1");
nums.add("7");

May 2006 VistALink 1.5 Developer Guide 23

Executing Requests

nums.add("8");
nums.add("2");
nums.add("6");
nums.add("9");
params.add(nums);
params.add("I am a string");
params.add(new RpcReferenceType("DTIME"));
vReq.setParams(params);

4.2.4. Specifying Indices for List-Type RPC Parameters
List-type RPC parameter values can be passed to VistALink in Java objects that implement the
List, Set, or Map interfaces.

If you pass List-type parameter values in an object that implements List or Set (but not Map),
the array index is automatically generated for you, as a single-level, integer, sequential index
starting at “1.” (The array becomes the array subscript level in M for the data.) This can be
convenient if the array index is not significant for your RPC.

However, if you need any of the following features in your array when it is passed to M, use an
object that implements Map (such as HashMap) instead:

• Negative index values
• Non-sequential index values
• Control over the index start point
• Non-integer index values
• Multi-level indices (>1 subscript level in M)

For each entry added to the Map object, the key becomes the M subscript, and the value becomes
the M value.

To pass a multi-level subscript, use the RpcRequest.buildMultipleMSubscriptKey()
method to generated the HashMap key.

4.2.4.1. List RPC Parameter Example (Explicit Index)

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
HashMap hm = new HashMap();
hm.add(".11", "0");
hm.add("1202", "23");
hm.add("1205", "595");
hm.add("time", "NOW");
params.add(hm);
vReq.setParams(params);

4.2.4.2. List RPC Parameter Example (Explicit Multi-Level Index)

24 VistALink 1.5 Developer Guide May 2006

 Executing Requests

RpcRequest vReq = RpcRequestFactory.getRpcRequest();
ArrayList params = new ArrayList();
HashMap hm = new HashMap();
hm.put(RpcRequest.buildMultipleMSubscriptKey("\"FRUIT\",1"), "Apple");
hm.put(RpcRequest.buildMultipleMSubscriptKey("\"FRUIT\",2"), "Orange");
hm.put(RpcRequest.buildMultipleMSubscriptKey("\"FRUIT\",3"), "Pear");
hm.put(RpcRequest.buildMultipleMSubscriptKey("\"FRUIT\",4"), "'nana");
params.add(hm);
vReq.setParams(params);

4.2.5. Other Useful RpcRequest Methods
For a complete list of other available RpcRequest methods, please see the Javadoc for
RpcRequest.

4.2.5.1. Clear Previous Request Parameters
If you are re-using a request object for additional requests, the RpcRequest.clearParams
method is provided so that you can clear any existing parameters. You should call this method
before attempting to set RPC parameters for subsequent requests:

//clear the params
vReq.clearParams();

4.2.5.2. Set the Message Format (Proprietary or XML)
VistALink's XML message format is based on the XML standard. As the transport format, it
permits the use of either XML or a proprietary format. RpcRequest defaults to the proprietary
format because it is faster.

//Set the request to use the propietary message format
vReq.setUseProprietaryMessageFormat(true);

//Set the request to use the XML message format
vReq.setUseProprietaryMessageFormat(false);

4.2.5.3. Set the RPC Context
If you are re-using a request object for additional requests, you can change the RPC Context
with this method:

private static final String RPCCONTEXT = "XOBV VISTALINK TESTER";
vReq.setRpcContext(RPCCONTEXT);

4.2.5.4. Set the RPC Name
If you are re-using a request object for additional requests, you can change the RPC Name with
this method:

vReq.setRpcName("XOBV TEST NOT IN CONTEXT");

May 2006 VistALink 1.5 Developer Guide 25

Executing Requests

4.2.5.5. Set the RPC Client Timeout
This method sets a “graceful” timeout period that is made available to the RPC code on the M
system. It is up to the M code to honor the timeout period, however. The value sent defaults to
600 seconds. You can change this value by calling the setRpcClientTimeOut method:

private static final int TIMEOUT = 300;
vReq.setRpcClientTimeOut(TIMEOUT);

For more information on the different kinds of timeouts, see the "Timeouts" section.

4.3. Response Processing
Once you have set up RpcRequest, you can execute an RPC interaction on the
VistALinkConnection object, using the RpcRequest object,. Doing this returns an
RpcResponse object. RpcResponse is a value object that provides information about the
response returned from M.

4.3.1. RpcResponse Class
The RpcResponse class is a value object that provides information about the response returned
from M. The RpcResponse object exposes methods to retrieve the results, results type, and an
org.w3c.dom.document object that contains the results, if the results are in XML format.

4.3.2. Request/Response Example

//request and response objects
RpcRequest vReq = null;
RpcResponse vResp = null;

//The Rpc Context
String rpcContext = "XOBV VISTALINK TESTER";

//The Rpc to call
String rpcName = "XOBV TEST STRING";

//Construct the request object
try {
 vReq = RpcRequestFactory.getRpcRequest(rpcContext, rpcName);
} catch(FoundationsException e) {
 // process exception as needed
}

//clear the params
vReq.clearParams();

//Set the params
vReq.getParams(). setParam(1, "string", "This is a test string!");

26 VistALink 1.5 Developer Guide May 2006

 Executing Requests

//Set the request to use the proprietary message format
vReq.setUseProprietaryMessageFormat(true);

//Execute the Rpc and construct the response with the
//RpcResponseFactory
try {
 vResp = vistaLinkConnection.executeRPC(vReq);
} catch(VistaLinkFaultException e) {
 // process exception as needed
} catch(FoundationsException e) {
 // process exception as needed
}

//Display the response
System.out.println(vResp.getResults());

4.3.3. Parsing RPC Results
All results from RPCs are returned as a single string from RpcResponse.getResults().

The RPC Broker defines five return types for RPCs (at the time of the current VistALink
release). The mapping between these return types and the single string returned through
VistALink are as follows:

Table 2. Mapping RPC Return Types to VistALink Result String Format

RPC Return Type VistALink Result String Format
Single Value As-is
Global Instance As-is
Array All array nodes concatenated sequentially, with each delimited by

linefeed (ASCII 10) character
Global Array All array nodes concatenated sequentially, with each delimited by

linefeed (ASCII 10) character
Word Processing Each word processing "line" concatenated sequentially, separated by

a linefeed (ASCII 10) character

One easy way to parse array-type results concatenated with line feeds is with the Java string
tokenizer. For example:

StringTokenizer st = new StringTokenizer(vResp.getResults(), "\n");
int cnt = st.countTokens();
for (int i = 0; i < cnt; i++) {
 system.out.println("Result node " + i + ": " + st.nextToken());
}

In JDK 1.5 and forward, Sun deprecates StringTokenizer in favor of the split()
function in java.lang.String.

May 2006 VistALink 1.5 Developer Guide 27

Executing Requests

4.3.4. XML Responses
Some newer RPCs may choose to return their results as an XML document. The RpcResponse
class provides two helper methods to turn the normal results string into an XML document. If
you expect the results from an RPC to be an XML document, you can call
RpcResponse.isXmlResponse to confirm if the response is in XML format, and
RpcResponse.getResultsDocument to convert the result string into an XML document:

//Get a org.w3c.dom.document object that contains the results if set
if (vReq.isXmlResponse()) {

org.w3c.dom.document xmlDoc = null;
try{
xmlDoc = vResp.getResultsDocument());
}catch(RpcResponseTypeIsNotXmlException e){
// process exception as needed

}catch(FoundationsException e){
// process exception as needed

}
}

4.4. How to Write RPCs
For guidelines on how to write RPC Broker RPCs, please refer to the extract Getting Started
With The BDK Chapter 3 (Extract): RPC Overview from the RPC Broker manual. Some special
considerations apply to writing RPCs in the new modes supported by VistALink, including n-
tier. These are discussed in the sections below.

4.4.1. Write Stateless RPCs Whenever Possible
When writing new RPCs to execute in an n-tier environment, we recommend making them
stateless whenever possible. “Stateless” means that each RPC execution is standalone: when a
sequence of RPCs is executed, there is no state maintained on the M system between RPC
executions. This way, if you need to use an RPC from one sequence of RPCs in another
sequence, your code will be more flexible.

The two main M-side state mechanisms traditionally used in RPCs -- $J (as a temporary storage
index) and global locking -- are both problematic in an n-tier environment. In the n-tier model,
there is no guarantee that your requests will execute in the same M job partition. Middle-tier
code will be retrieving and returning VistALink connections to a connection pool across a
number of client-tier accesses, and because connections are not “dedicated” to a single user
session, the underlying M partition may be a different one each time, with a different $J.

4.4.2. When State is Needed
When you do need to maintain state on the M system between RPC invocations, the two
approaches discussed in the sections below are recommended. They are more compatible with
the n-tier model.

28 VistALink 1.5 Developer Guide May 2006

 Executing Requests

4.4.2.1. Session ID as Temporary Storage Index
Rather than using $J for a temporary storage index, we recommend that you implement a session
ID, guaranteed to be unique on the M system, to index storage on the M system, and that you
maintain the session ID state on the middle tier. You can then use the session ID between
middle-tier invocations on a variety of connections with different underlying $Js and still be able
to consistently retrieve your indexed temporary data from the M system.

Note: Kernel may provide a new API for middle tiers to obtain a guaranteed unique M system
session identifier to index temporary storage locations.

4.4.2.2. FileMan-Based Lock File
An alternative to the M LOCK command is to implement a FileMan-based lock file mechanism to
synchronize locking across requests, connections, and middle-tier accesses. Note that a lock file
needs to be used in all application code that needs to honor the lock – whether “roll & scroll,”
client-server, or n-tier.

You will probably also need APIs for locking and unlocking. Locks should probably be unlocked
automatically after a period of time (e.g., lost connection) or based on some state change or event
in the application session.

Note: Foundations may provide FileMan-based lock file functionality in the future.

4.4.3. Pitfalls of Using of $JOB in Stateful RPCs
When running RPCs in an n-tier model, there is no guarantee that all your requests will execute
in the same M job partition. Your middle tier will be retrieving and returning VistALink
connections to a connection pool across client-tier accesses, and each connection retrieved from
the connection pool may have a different $J.

If you have an RPC sequence that shares data across RPCs using temporary M storage indexed
by $J, the RPC sequence must be performed over the same connection (or else $J will change).
In n-tier mode, this means the RPC sequence must be executed over one connection before
closing it (returning it to the connection pool).

Another $J-related issue can occur even if you execute an RPC sequence over a single
connection. The default VistaLinkRequestRetryStrategy implementation allows a request
to be retried. If you use it and connectivity fails, the request will be retried on a new connection,
and therefore using a new $J. So if your RPCs communicate by leaving values on the M system
indexed by $J, you should consider using VistaLinkRequestRetryStrategyDeny for those
requests.

4.4.4. Pitfalls of Global Locking in Stateful RPCs
When running RPCs in an n-tier model, locking global nodes across RPCs presents the same
issues as when using $J across RPCs. In particular, you cannot lock data in an RPC over one
connection and unlock data in a different connection. Also, if the M partition that sets a lock

May 2006 VistALink 1.5 Developer Guide 29

Executing Requests

exits, the M operating system automatically clears the lock. Therefore locking can only be used
safely within a single RPC, or within an RPC sequence that will be executed over a single
connection.

As with $J, another locking-related issue can occur if network connectivity fails and your request
is retried (which would be over a different connection). Therefore you should consider using
VistaLinkRequestRetryStrategyDeny for requests that depend on locking across RPCs: if
connectivity fails and a request is retried, the request will be retried over a new connection that
does not own the lock. (The lock may be released anyway, since the previous partition will
probably exit as a consequence of the network connectivity failure).

30 VistALink 1.5 Developer Guide May 2006

5. VistALink Exception Reference
VistALink, like any other Java application, uses exceptions to indicate various error conditions
that can occur during excecution.

5.1. Checked and Unchecked Exceptions
There are two types of exceptions in the Java programming language:

• Checked exceptions: These have to be declared in the method signature “throws” clause

if they are thrown by the method. Checked exceptions have to be explicitly caught by the
caller within a “try / catch” block.

• Unchecked exceptions: These do not have to be declared in the method signature if they

are thrown by the method. Unchecked exceptions do not need to be explicitly caught by
the caller. Unchecked exceptions can be caught by the caller even if the method does not
explicitly throw them.

The diagram below depicts a class hierarchy of base Java exception classes. VistALink throws
only checked exceptions.

Throwable

ErrorException

RuntimeException

Unchecked exceptions

Checked exceptions

 Figure 1. Java Base Exception Classes

May 2006 VistALink 1.5 Developer Guide 31

VistALink Exception Reference

5.2. Catching Exceptions
It is important to remember when an application calls a method that (in turn) throws exception A,
the application can do two things:

• Catch exception A

• Catch any exception AB that is subclassed from exception A, even though calling a
method declaration only declares to throw a parent exception. Example:

public class ParentException extends Exception {
}
public class SubException extends ParentException {
}
public class ExceptionSample {

 public static void test() throws ParentException {
 throw new SubException();
 }

 public static void main(String[] args) {
 try {
 ExceptionSample.test();
 } catch (SubException e) {
 System.out.println("Caught SubException exception");
 } catch (ParentException e) {
 System.out.println("Caught ParentException exception");
 }
 }
}

In the example above, we are declaring ParentException and its subclass SubException.
ExceptionSample class has a method test() that declares to throw ParentException.
Method test() implementation instead throws a more specific exception SubException.
The test() method could choose to declare the fact that it is throwing both
ParentException and SubException, but that is not required by the Java specifications.

The test() method caller can only catch ParentException. This takes care of catching
ParentException and all ParentException subclasses. But if the test() method caller
knows that test() method throws a more specific exception (a subclass of the
ParentException), then the caller can choose to catch a more specific SubException, even
though test() method does not explicitly declare the fact that it throws SubException.

This is an important point, as both the VistALink security modules and the VistALink resource
adapter modules often throw more specific VistALink exceptions, even though those exceptions
are not declared to be thrown and only parent exceptions are declared to be thrown from
VistALink methods.

32 VistALink 1.5 Developer Guide May 2006

 VistALink Exception Reference

5.3. VistALink Exception Hierarchy

FoundationsExceptionInterface
 │
 ├ FoundationsException (extends java.lang.Exception)
 │ │
 │ ├ InstitutionMapNotInitializedException
 │ ├ InstitutionMappingNotFoundException
 │ ├ RpcResponseTypeIsNotXmlException
 │ ├ VistaKernelHashCountLimitExceededException
 │ │
 │ ├ VistaLinkFaultException
 │ │ │
 │ │ ├ LoginsDisabledFaultException
 │ │ ├ NoJobSlotsAvailableFaultException
 │ │ ├ RpcFaultException
 │ │ │ ├ NoRpcContextFaultException
 │ │ │ ├ RpcNotInContextFaultException
 │ │ │ └ RpcTimeOutFaultException
 │ │ │ └ RpcNotOkForProxyUseException
 │ │ │
 │ │ └ SecurityFaultException
 │ │ ├ SecurityAccessVerifyCodePairInvalidException
 │ │ ├ SecurityConnectionProxyException
 │ │ ├ SecurityDivisionDeterminationFaultException
 │ │ ├ SecurityIdentityDeterminationFaultException
 │ │ ├ SecurityIPLockedFaultException
 │ │ ├ SecurityPrimaryStationMismatchException
 │ │ ├ SecurityProductionMismatchException
 │ │ ├ SecurityTooManyInvalidLoginAttemptsFaultException
 │ │ ├ SecurityUserAuthorizationException
 │ │ └ SecurityUserVerifyCodeException
 │ │
 │ └ VistaSocketException
 │ │ │
 │ ├ VistaLinkSocketAlreadyClosedException
 │ └ VistaSocketTimeOutException
 │
 ├ VistaLinkResourceException (extends
 │ │ javax.resource.ResourceException)
 │ ├ ConnectionHandlesExceededException
 │ ├ HeartBeatFailedException
 │ │ └ HeartBeatInitializationFailedException
 │ └ VistaLinkSocketClosedException
 │
 └ VistaLoginModuleException (extends

May 2006 VistALink 1.5 Developer Guide 33

VistALink Exception Reference

 │ javax.security.auth.login.LoginException)
 ├ VistaLoginModuleIPLockedException
 ├ VistaLoginModuleLoginsDisabledException
 ├ VistaLoginModuleNoJobSlotsAvailableException
 ├ VistaLoginModuleNoPathToListenerException
 ├ VistaLoginModuleTooManyInvalidAttemptsException
 ├ VistaLoginModuleUserCancelledException
 └ VistaLoginModuleUserTimedOutException

Figure 2. VistALink Exception Hierarchy

Because VistALink implements various Java specifications (e.g., Java Authentication and
Authorization Service (JAAS) and J2EE Connectors), each Java specification dictates usage of a
specific base exception class. To be able to work with all types of exceptions, VistALink defines
one unifying exception interface: gov.va.med.exception.FoundationsExceptionInterface.

Two methods are defined in this interface: getFullStackTrace() and getNestedException().
These methods are used by utility classes such as gov.va.med.exception.ExceptionUtils to
retrieve nested exception information.

5.4. J2EE and J2SE Connectors Exceptions
J2EE Connectors requires adapter methods to throw javax.resource.ResourceException.

5.4.1. VistaLinkResourceException
VistALink implements gov.va.med.vistalink.adapter.cci.VistaLinkResourceException
that extends javax.resource.ResourceException. VistaLinkResourceException is thrown
from all J2EE Connectors required methods as well as any custom method in VistALink that
implements connection management interfaces.

VistaLinkResourceException more specific exception subclasses include (see the VistALink
Exception Hierarchy figure above):

• ConnectionHandlesExceededException
• VistaLinkSocketClosedException
• HeartBeatFailedException
• HeartBeatInteractionFailedException.

5.4.2. FoundationsException
The J2EE Connector Architecture specification defines optional record and interaction
management interfaces that are not implemented in VistALink. Instead, VistALink uses
VistaLinkConnection::executeRPC(), VistaLinkConnection::executeInteration() and
classes in gov.va.med.vistalink.adapter.record package to implement interaction and
record management. These methods are not governed by the J2EE Connector Architecture

34 VistALink 1.5 Developer Guide May 2006

 VistALink Exception Reference

specification. Hence VistALink uses gov.va.med.exception.FoundationsException
and its subclasses in these methods.

5.4.3. VistaLinkFaultException
VistALink communications with M can produce exceptions that originate from the Java code
side. In that case, VistaLinkResourceException and FoundationsException will be
thrown (described above).

VistALink communications with M can also produce exceptions that originate from the M side.
In those cases a Fault message is sent back to VistALink from M. Fault messages are parsed and
gov.va.med.vistalink.adapter.record.VistaLinkFaultException that extends
FoundationsException are constructed to be thrown in those cases.

VistaLinkFaultException will have all the information that is sent back from the M side to
Java, including: faultCode, faultString, faultActor, errorCode, errorType and
errorMessage.

VistaLinkFaultException more specific exception subclasses include (see the VistALink
Exception Hierarchy figure above):

• NoJobSlotsAvailableFaultException
• LoginsDisabledFaultException
• SecurityFaultException (contain more specific subclasses)
• RpcFaultException (contain more specific subclasses)

5.4.4. Common FoundationsExceptionInterface
gov.va.med.exception.FoundationsExceptionInterface is defined to be able to have
common interface for all types of VistALink exceptions. Implementation of this interface allows
gov.va.med.exception.ExceptionUtils to work exceptions, no matter what they inherit
from.

5.4.5. Exception Nesting
Exception nesting is a technique used to collect full information about the error that occurred in
the processing method call. Example:

Exception A can be thrown from a library. Client code catches the exception A and rethrows
new exception B while preserving the original exception A within new exception’s member
variables.

This new exception B once again could be caught by some other client code that could throw
new exception C while preserving caught exception B within exception’s C member
variables:

A nested within B nested within C.

May 2006 VistALink 1.5 Developer Guide 35

VistALink Exception Reference

This way, all caught and rethrown exceptions are kept as a linked exception list. This lets us keep
all information about the error’s origination and how the error is handled by the code.
JDK 1.4 has native support for exception nesting, while JDK 1.3 does not have native support for
exception nesting. Since VistALink runs both on JDK 1.3 and 1.4, VistALink has implemented a
custom exception nesting framework.

All VistALink base exception classes implement exception nesting:

• gov.va.med.foundations.utilities.FoundationsException
• gov.va.med.foundations.adapter.cci.VistaLinkResourceException
• gov.va.med.foundations.security.vistalink.VistaLoginModuleExcepti

on

5.5. Working with Nested Exceptions
If your code catches one of the above exceptions, here are some features that can be expected:

exception.getMessage() returns all nested exception messages in the folling format:
 Wrapper exception;
 Root cause exception:
 java.lang.Exception: Here is my nested exception.

exception.printStackTrace() will print both nested exception messages and full stack trace:
gov.va.med.exception.FoundationsException:
 Wrapper exception;
 Root cause exception:
 java.lang.Exception: Here is my nested exception.
java.lang.Exception: Here is my nested exception.
 at
gov.va.med.vistalink.utilities.test.FoundationsExceptionTest.t2
(FoundationsExceptionTest.java:106)
 at
gov.va.med.vistalink.utilities.test.FoundationsExceptionTest.t1
(FoundationsExceptionTest.java:109)
 at
gov.va.med.vistalink.utilities.test.FoundationsExceptionTest.testConstruc
torStrExc(FoundationsExceptionTest.java:128)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
 at java.lang.reflect.Method.invoke(Unknown Source)
 at junit.framework.TestCase.runTest(TestCase.Java:154)
 at junit.framework.TestCase.runBare(TestCase.Java:127)
 at junit.framework.TestResult$1.protect(TestResult.Java:106)
 at junit.framework.TestResult.runProtected(TestResult.Java:124)
 at junit.framework.TestResult.run(TestResult.Java:109)

36 VistALink 1.5 Developer Guide May 2006

 VistALink Exception Reference

 at junit.framework.TestCase.run(TestCase.Java:118)
 at junit.framework.TestSuite.runTest(TestSuite.Java:208)
 at junit.framework.TestSuite.run(TestSuite.Java:203)
 at junit.swingui.TestRunner$16.run(TestRunner.Java:623)

exception.getNestedException() will return a nested exception. Note: do not use this
method to unwind the nested exception linked list as there is a helper method in
ExceptionUtils.getNestedExceptionByClass() that does just that.

See the section “ExceptionUtils” below for more methods that can be used when working with
exceptions.

5.5.1. ExceptionUtils
gov.va.med.exception.ExceptionUtils is a utility class that contains static helper
methods such as getFullStackTrace() and getNestedExceptionByClass() to help
unwind the nested exception stack trace.

5.5.2. ExceptionUtils:: getFullStackTrace(Throwable e)
ExceptionUtils:: getFullStackTrace(Throwable e) returns the full stack trace, in
case you need to print the stack trace for exception e to some other place other than the system
output console, such as the HTML error page or the Swing text box. To print the stack trace to
system output console just use exception.printStackTrace().

Notice that we are using Throwable instead of Exception here, as this will allow us to
print a stack trace even for Errors. The getFullStackTrace method prints out both the
nested exception message set as well as the full stack trace. If you are using this method to return
the full stack trace, this means the error message will be part of it and you don’t need to use
exception.getMessage().

5.5.3. ExceptionUtils:: getNestedExceptionByClass()
ExceptionUtils:: getNestedExceptionByClass(Throwable e, Class exceptionClass)
returns an exception if an exception of a class type exceptionClass exists in the exception e
nested exception linked list.

So if your nested exceptions look like this:

 (a instance of A) nested within (b instance of B) nested within (c instance of C)

Then a calls:

ExceptionUtils:: getNestedExceptionByClass(c, C) returns c.
ExceptionUtils:: getNestedExceptionByClass(c, B) returns b.
ExceptionUtils:: getNestedExceptionByClass(c, A) returns a.

May 2006 VistALink 1.5 Developer Guide 37

VistALink Exception Reference

38 VistALink 1.5 Developer Guide May 2006

6. Foundations Library Utilities
The Java APIs discussed in this chapter are the Foundations Library utilities. They are provided in
vljFoundationsLib-1.5.0.jar.

6.1. Encryption: gov.va.med.crypto
The VistaKernelHash utility class implements a two-way hash via two static methods, encrypt
and decrypt. These provide the encoding and obfuscation algorithms used by the RPC Broker and
Kernel to encode and decode data strings.

Using these algorithms makes it harder to sniff the contents of text sent over the network. This is not,
however, encryption-class encoding, nor does it protect against replay attacks of un-decoded strings. As a
two-way hash, this algorithm should not be considered an implication or achievement of any particular
security level beyond obfuscation.

Example (encoding):

String encodedString =
 VistaKernelHash.encrypt("some text to encode", true);

The second parameter is useful if the text is to be passed in a CDATA section of an XML message. If this
parameter is set to true, the returned encoded strings will contain neither "]]>" nor "<![CDATA[".
Otherwise, it is possible a returned encoding may contain those character sequences. If, in a reasonable
number of tries, an encoded string cannot be created without these CDATA boundaries, an exception is
thrown of type VistaKernelHashCountLimitExceededException.

Example (decoding):

String decodedString =
 VistaKernelHash.decrypt(encodedString);

6.2. J2EE Environment: gov.va.med.environment
6.2.1. Environment.isProduction()
Returns whether or not the administrator has configured the J2EE server to be "production" in a
VA-medical-center sense, i.e., the system is operating on production VA data. The source of the
setting is the gov.va.med.environment.production JVM argument passed to the J2EE
server upon startup. A setting of “true” designates the server as a production server; any other
value (including not passing the JVM argument at all) marks the server as a non-VA production
server.

Returns: true if the server is a VA production server, false if not.

May 2006 VistALink 1.5 Developer Guide 39

Foundations Library Utilities

6.2.2. Environment.getServerType()
Returns the J2EE server type. The source of the setting is the
gov.va.med.environment.servertype JVM argument passed to the J2EE server upon
startup. Defaults to return UNKNOWN if the JVM argument is not present.

Returns: ServerType: JBOSS | ORACLE | SUN_RI_13 | UNKNOWN | WEBLOGIC |
WEBSPHERE

6.3. Exception: gov.va.med.exception
For more information on the Exception utilities provided in the gov.va.med.exception
package, see the VistALink Exception Reference section of this document.

6.4. Audit Timer: gov.va.med.monitor.time
VistALink uses gov.va.med.monitor.time.AuditTimer to capture and log information on
the length of execution for VistALink interactions using lo4j-logging capabilities. Special logger
gov.va.med.vistalink.adapter.spi.VistaSocketConnection.AuditLog is used to
output this information. Applications can use AuditTimer independently if they want to report
timer information for various processing requests.

Two types of constructors can be used to construct the AuditTimer instance:

• For public AuditTimer(), default logger
gov.va.med.monitor.time.AuditTimer is used.

• For public AuditTimer(Logger logger), an application-specific logger is used.

AuditTimer logs milliseconds elapsed between start() and stop() calls. The number of
elapsed milliseconds can be retrieved using getTimeElapsedMillis().

Logging can be done using either log() method:

• public void log()
• public void log(String message): Since the logger can be passed into the

constructor and the output pattern for a specific logger can be configured using the log4j
configuration file, there should be no need to pass info message. Instead, different loggers
should be used.

6.4.1. Sample Code

import gov.va.med.monitor.time.AuditTimer;

public class AuditTimerTest {
 private static AuditTimer timer = null;

40 VistALink 1.5 Developer Guide May 2006

 Foundations Library Utilities

 private static Logger auditLogger =
Logger.getLogger(AuditTimerTest.class.getName() + ".AuditLog");

 public static void main(String[] args) {
 // Initialize Log4j configuration
 DOMConfigurator.configureAndWatch("props/log4jConfig.xml",
10000);

 timer = new AuditTimer(auditLogger);
 // Start timer
 timer.start();

 // ... perform your operations

 // Stop timer
 timer.stop();

 // Log elapsed time information
 timer.log();

 // Get time elapsed if not for logging purposes
 long timeElapsed = timer.getTimeElapsedMillis();
 }
}

The following is a snippet from the log4j configuration file:

 <appender name="auditTimerTestConsoleAppender"
class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="Audit time - %m%n"/>
 </layout>
 </appender>

 <logger name="gov.va.med.vistalink.utilities.test.AuditTimerTest.AuditLog"
>
 <level value="debug" />
 <appender-ref ref="auditTimerTestConsoleAppender"/>
 </logger

6.5. XML: gov.va.med.xml
6.5.1. XmlUtilities Class
This class contains a number of static utility methods to help developers work with XML
documents, nodes, attributes and strings. These utilities are XML-parser independent.

The tables below describe the VistALink utility methods and variables.

May 2006 VistALink 1.5 Developer Guide 41

Foundations Library Utilities

Table 3. VistALink Utility Methods
Static Method Signature Description
String convertXmlToStr(Document doc) Converts a DOM document to a

string
Document getDocumentForXmlString(
 String xml)

Returns an XML DOM Document
for the specified String

Document getDocumentForXmlInputStream(
 InputStream xml)

Returns an XML DOM Document
for the specified InputStream

Attr getAttr(Node node, String attrName) Returns the Attribute with the
given attrName at node

Node getNode(String xpathStr, Node node) Returns the first node at the
specified XPath location

Table 4. VistALink Utility Variables
Static Final Variables Description
String XML_HEADER Represents the default header used

for all xml documents that
communicate with an M server via
VistALink. It is important to use
this header as this keeps the client
and M server in sync.

6.5.2. XMLUtilities Example

String xmlStr = XmlUtilities.XML_HEADER
 + "<VistaLink messageType='"
 + RpcRequest.GOV_VA_MED_RPC_REQUEST
 + "'"
 + " mode='singleton'"
 + " version='1.0'"
 + " xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'"
 + " xsi:noNamespaceSchemaLocation='rpcRequest.xsd'"
 + " xmlns='http://med.va.gov/Foundations'"
 +">"
 + " <RpcHandler version='1.0'/>"
 + " <Request rpcName='' rpcClientTimeOut='600' version='1.0' >"
 + " <RpcContext></RpcContext>"
 + " <Params><Param type=’array’ ></Param></Params>"
 + " </Request>"
 + "</VistaLink>";

Document doc = XmlUtilities.getDocumentForXmlString(xmlStr);

Node param = XmlUtilities.getNode("/VistaLink/Request/Params/Param",
requestDoc);

String type = XmlUtilities.getAttr(param, "type").getValue();
String xmlCopy = XmlUtilities.convertXmlToStr(xmlDoc);
...

42 VistALink 1.5 Developer Guide May 2006

http://www.w3.org/2001/XMLSchema-instance
http://med.va.gov/Foundations

 Foundations Library Utilities

FileInputStream xmlStream = FileInputStream(“myRequest.xml”);
Document myReq = XmlUtilities.getDocumentForXmlInputStream(xmlStream);
...

6.6. Network: gov.va.med.net

The following classes provide basic socket-based network functionality:

• SocketManager: Represents a socket that can be used to communicate with IP end
points.

• VistaSocketException: Represents an exception thrown during read/write operations

on a socket

• VistaSocketTimeOutException: Represents an exception identifying a timeout has

occurred during read/write operations.

For more information on gov.va.med.net classes, see the Javadoc documentation provided in
the VistALink distribution file.

May 2006 VistALink 1.5 Developer Guide 43

Foundations Library Utilities

44 VistALink 1.5 Developer Guide May 2006

7. Using VistALink with J2SE Applications
Using VistALink to build J2SE client/M server applications is very similar to using VistALink in
J2EE. The main differences are in the areas of authentication and obtaining a connection. Sample
J2SE applications are provided in the VistALink distribution file, in the samples/J2SE folder.

7.1. Authenticating and Connecting to VistA in Client-Server
Mode

In J2EE, applications retrieve and return VistALink connections to a connection pool. In J2SE
mode, however, VistALink establishes a direct, persistent connection on behalf of the J2SE
application to the M server. Unless the server is shut down, this connection remains open until
closed by the client.

The high-level steps to establish a VistALink connection to M in J2SE mode are:

1. Provide server configuration information to VistALink (IP address and port of the M
VistALink listener to connect to)

2. Authenticate the end-user over the connection

3. Execute RPCs

4. Close the connection (log out)

VistALink uses the Java Authentication and Authorization Service (JAAS) framework for steps
1, 2 and 4 above. For information on step 3, see the section “Executing Requests.”

7.1.1. JAAS Overview
JAAS is a Java pluggable framework for user authentication and authorization. “Pluggability”
means that different security modules (e.g., authentication modules) can be added or “plugged
in” to an application without recompiling the application. VistALink uses the JAAS framework
to authenticate end-users to an M/Kernel system, via the users' customary Kernel access and
verify codes.

A JAAS-compliant login module contains all of the logic required to authenticate a user to a
given system. The login module class does not itself, however, include the user interface to
gather authentication credentials (e.g., access and verify codes) from the end-user. Instead, a set
of JAAS-compliant callbacks, along with a JAAS-compliant callback handler, are used to de-
couple the user interface from the login module. VistALink provides a JAAS-compatible login
module and JAAS-compliant callbacks and callback handlers to perform a VistA login.

Although the JAAS framework also provides authorization capabilities, VistALink uses JAAS
for authentication only. VistALink does not make any use of the permission/authorization
portions of the JAAS specification at this time.

May 2006 VistALink 1.5 Developer Guide 45

Using VistALink with J2SE Applications

7.2. VistALink JAAS Implementation
7.2.1. VistaLoginModule
VistALink provides a single JAAS-compliant login module class, VistaLoginModule. As a
developer, you do not use this class directly because your application does the following:

• Specifies which login module to use, via a JAAS configuration file

• Creates a LoginContext instance, and passes it a supported callback handler instance
to collect user input

• Invokes the login method of the LoginContext class to initiate the login process for
the configured login module

7.2.2. JAAS Login Configuration Overview
By default, VistALink uses the default JAAS configuration reader to load login configurations.
The default JAAS configuration reader class loads login configurations from a JAAS
configuration file, which it expects to be in a predefined format.

One or more configuration entries are defined in the JAAS configuration file. The configuration
file itself can have any name, and can be located anywhere. Each entry in the JAAS
configuration file defines a particular login configuration. Generically, the format of this file is as
follows:

ConfigurationName {
 ModuleClass Flag ModuleOptions;
 };

 ConfigurationName {
 ModuleClass Flag ModuleOptions;
 };

7.2.3. VistALink-Specific JAAS Login Configuration
The following is an example of the JAAS configuration file format needed specifically for
VistALink:

Test {
 gov.va.med.vistalink.security.vistalink.VistaLoginModule requisite
 gov.va.med.vistalink.security.vistalink.ServerAddressKey="10.21.185"
 gov.va.med.vistalink.security.vistalink.ServerPortKey="18010";
};
Production {
 gov.va.med.vistalink.security.vistalink.VistaLoginModule requisite
 gov.va.med. vistalink.security.vistalink.ServerAddressKey="10.21.1.85"
 gov.va.med.vistalink.security.vistalink.ServerPortKey="8005";
};

46 VistALink 1.5 Developer Guide May 2006

 Using VistALink with J2SE Applications

This example defines two login configurations, one named "Test" and one named "Production."
An application uses this name (Test or Production) as the index to retrieve a particular
configuration from the JAAS configuration file.

To configure a VistALink login to a VistA system, configure a single login module per login
configuration entry, within each entry's {braces}, as follows:

1. Name the VistALink login module class, including package name:

 gov.va.med.vistalink.security.vistalink.VistaLoginModule

2. Follow with a flag indicating what action to take if login fails. For VistALink, use

requisite.

3. Follow with options for the VistALink login module. There are two options that must be set,

in "name=value" format:

 gov.va.med.vistalink.security.vistalink.ServerAddressKey
 gov.va.med.vistalink.security.vistalink.ServerPortKey

 Use quotes around the server address and server port values.

4. Before the closing brace, end with a semicolon.

5. Follow the closing brace with a semicolon.

For more information about the JAAS configuration file format expected by the default JAAS
configuration file reader class, see:

http://java.sun.com/j2se/1.4.1/docs/guide/security/jgss/tutorials/LoginConfigFile.html

Note: It is possible to define your own JAAS configuration reader class, instead of using the
default class. If you do this, you are still responsible for providing the package/name of the
VistaLoginModule class, the JAAS requisite flag, and the two options required by the
VistaLoginModule.

7.2.4. Passing the JAAS Login Configuration(s) to Your JVM
The JAAS Login Configuration needs to be passed to the JVM (and hence to your application).
The JAAS configuration can be passed in two ways:

• With the javax.security.auth.login.Configuration Java virtual machine
(JVM) argument when launching your application, e.g.:

May 2006 VistALink 1.5 Developer Guide 47

http://java.sun.com/j2se/1.4.1/docs/guide/security/jgss/tutorials/LoginConfigFile.html

Using VistALink with J2SE Applications

 java -Djava.security.auth.login.config=jaas.config MyApp

• In the Java security properties file.

In most cases it is preferable to use the JVM argument, since it allows the setting to be
application-specific rather than machine-wide.

7.2.5. Selecting the JAAS Configuration From an Application
Once your application is running, it should select a specific configuration. In order to allow local
administration of JAAS configuration files, you should, in most cases, provide a command-line
parameter to allow local administrators to pass a particular JAAS configuration into your
application. For example:

 java -Djava.security.auth.login.config=jaas.conf MyApp Production

7.2.6. VistaLoginModule Callback Handlers
In order to decouple the user interface for logon from the login module, the JAAS standard
allows login modules such as VistaLoginModule to supply different callback handlers.
VistALink supplies two callback handler classes, one for an interactive logon, and one for non-
interactive unit testing:

• CallbackHandlerSwingCCOW: for production application use. Performs single-signon
if credentials are already present in CCOW user context. Otherwise, collects access code,
verify code, division and "change verify code" input via a set of Swing dialogs; stores
single sign-on credentials in CCOW user context for subsequent application use.

• CallbackHandlerSwing: for production application use. Collects access code, verify
code, division and "change verify code" input via a set of Swing dialogs.

• CallbackHandlerUnitTest: for unit testing only (not production use). Access code,
verify code, division are passed as parameters to the class constructor, resulting in a
"silent" login suitable for (non-interactive) unit testing. The "change verify code"
functionality is not supported.

Part of the JAAS VistALink login involves instantiating one of these two callback handler
classes and passing the class as a parameter to create a JAAS login context (see “Putting the
Pieces Together,” below.

7.3. Putting the Pieces Together: VistALink JAAS Login
7.3.1. Logging in to VistA
The following is an example login. If application execution succeeds through the try block, the
user has successfully logged in to the specified VistA listener.

// variable holding LoginContext should have application scope

48 VistALink 1.5 Developer Guide May 2006

 Using VistALink with J2SE Applications

// since it will be needed to log out, later on
private LoginContext loginContext = null;

try {

 // create the callback handler to use to collect user input
 // pass current Frame as parameter
 CallbackHandlerSwing cbhSwing = new CallbackHandlerSwing(myFrame);

// create the LoginContext to control the login process;
 // pass the JAAS configuration to connect to, and the callback
 // handler (jaasConfigName value could be passed in from command
 // line)
 loginContext = new LoginContext(jaasConfigName, cbhSwing);

 // login to server through the LoginContext
 loginContext.login();

} catch (VistaLoginModuleException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

} catch (LoginException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

}

7.4. After Successfully Logging In
7.4.1. Retrieving the VistaKernelPrincipal
The JAAS subject is available from the JAAS LoginContext class after a successful login.
It contains a JAAS principal (user entity), which holds:

• Demographic information about the logged-in user
• The authenticated VistALink connection object

The following code shows how to retrieve the Kernel principal after a successful login:

// variable holding Kernel principal may need application scope
// since it will be needed for RPC execution
private VistaKernelPrincipalImpl userPrincipal = null;

// . . . login code

// get the Kernel principal after logon
try {
 userPrincipal = VistaKernelPrincipalImpl.getKernelPrincipal(
 loginContext.getSubject());
} catch (FoundationsException e) {
 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",

May 2006 VistALink 1.5 Developer Guide 49

Using VistALink with J2SE Applications

 JOptionPane.ERROR_MESSAGE);
}

In the future, it is conceivable that more than one principal could be contained in the JAAS
subject after login, if multiple login modules are used. This might happen when a compound
login has been configured, requiring several logins to complete, e.g., one for a Kernel M system
and one for a separate health data repository.

Only one *Kernel* principal should ever be returned, however. Use the getKernelPrincipal
helper method in the VistaKernelPrincipalImpl class to retrieve the single Kernel
principal.

7.4.2. Retrieving the Authenticated Connection From the Principal
To execute RPCs, you need to retrieve the authenticated connection. The authenticated
connection object over which you make requests is stored in the Kernel principal, and can be
retrieved with the getAuthenticatedConnection method.

Once a successful login has been completed, you should retrieve the associated authenticated
connection from the Kernel principal. This connection is "logged in" to the M system under the
end-user's identity. You can then use it to execute requests such as RPCs on behalf of the end-
user.

For more information on executing requests, see the chapter of this manual titled “Executing
Requests.” An example of successful login appears below.

VistaLinkConnection myConnection =
 userPrincipal.getAuthenticatedConnection();

// . . . now you can execute requests

For information on how to use the VistaLinkConnection object to execute requests, see the
section “Executing RPCs,” below.

7.4.3. Retrieving User Demographic Information
Use the following predefined static KEY* strings to retrieve user demographic values via the
Kernel principal's getUserDemographicValue method. For example:

// get the DUZ
String duz = this.userPrincipal.getUserDemographicValue(
 VistaKernelPrincipalImpl.KEY_DUZ);

// get the name
String name = userPrincipal.getUserDemographicValue(
 VistaKernelPrincipalImpl.KEY_NAME_DISPLAY);

The table below shows a complete set of returned demographics information and keys.

50 VistALink 1.5 Developer Guide May 2006

 Using VistALink with J2SE Applications

Table 5. Demographics Keys and Values

Key Value
KEY_DIVISION_IEN Login division station IEN

KEY_DIVISION_STATION_NAME Login division station name

KEY_DIVISION_STATION_NUMBER Login division station number

KEY_DTIME User timeout value

KEY_DUZ DUZ

KEY_LANGUAGE User language

KEY_NAME_DEGREE User degree

KEY_NAME_FAMILYLAST Name component family-last

KEY_NAME_GIVENFIRST Name component given-first

KEY_NAME_MIDDLE Name component middle

KEY_NAME_NEWPERSON01 New Person .01 Field name

KEY_NAME_PREFIX Name component prefix

KEY_NAME_SUFFIX Name component suffix

KEY_SERVICE_SECTION User service/section

KEY_NAME_DISPLAY Concatenated standard name

KEY_TITLE User title

7.4.4. Executing RPCs
Once you have a VistaLinkConnection connection object to work with, you can execute
requests in exactly the same fashion as for VistALink's J2EE mode. For more information, see
chapter 4 of this document, “Executing Requests.” The entire chapter is valid for J2SE mode.

For information on timeouts for RPC execution, see the "Timeouts" section of this document
titled "Using VistALink in J2EE." Most of the information there on timeouts is also valid for the
J2SE mode.

7.4.5. Logging Out
Your application should always call the logout method of the JAAS LoginContext class to log
out of VistA before exiting. This ensures that proper Kernel cleanup (e.g., of the ^TMP global)
occurs on the M server to which the user was connected.

7.4.5.1. Logging Out of Swing Applications
In a Swing application, the application should always call the LoginContext's logout method
when the application is shut down. There are a number of ways an application can be shut down:

May 2006 VistALink 1.5 Developer Guide 51

Using VistALink with J2SE Applications

The user closes the application window, the application is terminated from the Windows control
panel, etc.

A good way to catch all of these shutdown cases is to implement a WindowAdapter as a
window listener in the application, and provide an implementation of its windowClosing
method that calls the LoginContext's logout method.

For example:

// loginContext has been defined earlier, with application scope

// add event listener to log out when window closes
frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 mylogout();
 System.exit(0);
 }
});

// Method called from event handler to perform logout
private void mylogout() {
 // Kernel logout
 if (this.userPrincipal != null) {

 try {
 loginContext.logout();
 } catch (LoginException e) {
 JOptionPane.showMessageDialog(null, e.getMessage(),
 "Logout error", JOptionPane.ERROR_MESSAGE);
 }
 }
}

7.5. Catching Login Exceptions
The LoginContext login() and logout() methods only throw exceptions that derive
from LoginException. So at a minimum, when executing the login or logout methods of a
LoginContext object, your application needs a try/catch block to catch LoginException.

7.5.1. VistaLoginModule Exception Hierarchy
JAAS requires LoginModules to throw javax.security.auth.login.LoginException
from JAAS classes implementation methods. So the VistALink login module throws exceptions
of type gov.va.med.vistalink.security.vistalink.VistaLoginModuleException, which
extends javax.security.auth.login.LoginException.

The VistaLink login module provides more granular exceptions from
VistaLoginModuleException, so that your application can optionally filter exceptions at a
finer level of granularity. This means that your application can detect and implement specific
processing for login exception types that might be of interest.

52 VistALink 1.5 Developer Guide May 2006

 Using VistALink with J2SE Applications

Table 6. VistALink Login Exceptions
Exception Description
VistaLoginModuleException Like a LoginException, but may contain

nested exception(s) that were the cause
for the LoginException.

VistaLoginModuleLoginsDisabledException Logins are disabled on the M server.
VistaLoginModuleNoJobSlotsAvailableException Job slot maximum has been exceeded

on M server.
VistaLoginModuleNoPathToListenerException No reachable listener was found on the

path represented by the specified IP
address and Port.

VistaLoginModuleTooManyInvalidAttemptsException The user tried to login too many times
with invalid credentials.

VistaLoginModuleUserCancelledException The user cancelled the login.
VistaLoginModuleUserTimedOutException The user timed out of the login.

For example, if your application is interested in whether the IP and port specified were "bad" (at
least at the time the login was attempted), you can trap for the
VistaLoginModuleNoPathToListener exception, in addition to the standard
LoginException. Example:

try {

 // create the callback handler to use to collect user input
 CallbackHandlerSwing cbhSwing = new CallbackHandlerSwing(myFrame);

 // create the LoginContext to control the login process.
 loginContext = new LoginContext(serverAlias, cbhSwing);

 // login to server through the LoginContext
 loginContext.login();
} catch (VistaLoginModuleLoginsDisabledException e) {

JOptionPane.showMessageDialog(
 null,
 "Logins are disabled; try later.",
 "Login error",
 JOptionPane.ERROR_MESSAGE);

} catch (LoginException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

}

May 2006 VistALink 1.5 Developer Guide 53

Using VistALink with J2SE Applications

7.6. Unit Testing and VistALink
The login user interface collects end-user information, including the access and verify code and
division number. It is separate from the logic that implements login, because of the pluggable
JAAS architecture. The user interface is contained in a JAAS-compliant set of callbacks, and the
login logic is contained in a JAAS-compliant login module. Therefore, the JAAS framework
makes it straightforward to implement alternative user interfaces for login.

VistALink provides an alternative callback handler that implements a "silent" (non-interactive)
login suitable for unit testing purposes. This silent login is not suitable for any production
environment. Your application passes the access and verify code, and (optionally) division to
silently log in your application. Changing the verify code is not supported with this callback
handler.

For example:

// Connection info
String cfgName = "Production";

// signon credentials for unit test callback handler
String accessCode = "asdf.123";
String verifyCode = "asdf.456";
String division = "";

try {

 // create the "unit test" callbackhandler for JAAS login
 CallbackHandlerUnitTest cbhUnitTest =
 new CallbackHandlerUnitTest(accessCode, verifyCode, division);

 // create the JAAS LoginContext for login
 lc = new LoginContext(cfgName, cbhUnitTest);

 // login to server
 lc.login();

} catch (VistaLoginModuleException e) {

JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
 JOptionPane.ERROR_MESSAGE);

} catch (LoginException e) {

JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",
JOptionPane.ERROR_MESSAGE);

}

54 VistALink 1.5 Developer Guide May 2006

Glossary
Access Code A password used by the Kernel system to identify the user. It is

used with the verify code.
Adapter Another term for resource adapter or connector.
Administration Server Each BEA WebLogic server domain must have one server instance

that acts as the administration server. This server is used to
configure all other server instances in the domain.

Alias An alternative filename.
Anonymous Software
Directories

M directories where VHA application and patch zip files are placed
for distribution.

Application Proxy User A Kernel user account designed for use by an application rather
than an end-user.

Application Server Software/hardware for handling complex interactions between
users, business logic, and databases in transaction-based, multi-
tier applications. Application servers, also known as app servers,
provide increased availability and higher performance.

Authentication Verifying the identity of the end-user.
Authorization Granting or denying user access or permission to perform a

function.
Base Adapter Version 8.1 of WebLogic introduced a “link-ref” mechanism

enabling the resources of a single “base” adapter to be shared by
one or more “linked” adapters. The base adapter is a standalone
adapter that is completely set up. Its resources (classes, jars, etc.)
can be linked to and reused by other resource adapters (linked
adapters). The deployer only needs to modify a subset of the linked
adapters’ deployment descriptor settings.

Caché Caché is an M environment, a product of InterSystems Corp.
CCOW A standard defining the use of a technique called "context

management," providing the clinician with a unified view on
information held in separate and disparate healthcare applications
that refer to the same patient, encounter or user.

Classpath The path searched by the JVM for class definitions. The class path
may be set by a command-line argument to the JVM or via an
environment variable.

Client Can refer to both the client workstation and the client portion of the
program running on the workstation.

Connector A system-level driver that integrates J2EE application servers with
Enterprise Information Systems (EIS). VistALink is a J2EE
connector module designed to connect to Java applications with
VistA/M systems. The term is used interchangeably with connector
module, adapter, adapter module, and resource adapter.

Connection Factory A J2CA class for creating connections on request.
Connection Pool A cached store of connection objects that can be available on

demand and reused, increasing performance and scalability.
VistALink 1.5 uses connection pooling.

Connector Proxy User For security purposes, each instance of a J2EE connector must be
granted access to the M server it connects to. This is done via a
Kernel user account set up on the M system. This provides initial
authentication for the app server and establishes a trusted
connection. The M system manager must set up the connector
user account and communicate the access code, verify code and

May 2006 VistALink 1.5 Developer Guide 55

Glossary

listener IP address and port to the J2EE system manager.
DCL Digital Command Language. An interactive command and scripting

language for VMS.
Division VHA sites are also called institutions. Each institution has a station

number associated with it. Occasionally a single institution is made
up of multiple sites, known as divisions. To make a connection,
VistALink needs a station number from the end-user’s New Person
entry in the Kernel Site Parameters file. It looks first for a division
station number and if it can’t find one, uses the station number
associated with default institution.

DSM Digital Standard MUMPS. An M environment, a product of
InterSystems Corp.

DUZ A local variable holding a number that identifies the signed-on user.
The number is the Internal Entry Number (IEN) of the user’s record
in the NEW PERSON file (file #200)

EAR file Enterprise archive file. An enterprise application archive file that
contains a J2EE application.

File #18 System file #18 was the precursor to the KERNEL SYSTEMS
PARAMETERS file, and is now obsolete. It uses the same number
space that is now assigned to VistALink. Therefore, file #18 must
be deleted before VistALink can be installed.

Global A multi-dimensional data storage structure -- the mechanism for
persistent data storage in a MUMPS database.

HealtheVet-VistA The VHA is converting its MUMPS-based VistA healthcare system
to a new J2EE-based platform and application suite. The new
system is known as HealtheVet-VistA.

IDE Integrated development environment. A suite of software tools to
support writing software.

Institution VHA sites are also called institutions. Each institution has a station
number associated with it. Occasionally a single institution is made
up of multiple sites, known as divisions. To make a connection,
VistALink needs a station number from the end-user’s New Person
entry in the Kernel Site Parameters file. It looks first for a division
station number and if it can’t find one, uses the station number
associated with default institution.

Institution Mapping The VistALink 1.5 release includes a small utility that
administrators can use to associate station numbers with JNDI
names, and which allows runtime code to retrieve the a VistALink
connection factory based on station number.

J2CA J2EE Connector Architecture. J2CA is a framework for integrating
J2EE-compliant application servers with Enterprise Information
Systems, such as the VHA’s VistA/M systems. It is the framework
for J2EE connector modules that plug into J2EE application
servers, such as the VistALink adapter.

J2EE Java 2 Enterprise Edition. A standard suite of technologies for
developing distributed, multi-tier, enterprise applications.

J2SE Java 2 Standard Edition. Sun Microsystem’s programming platform
based on the Java programming language. It is the blueprint for
building Java applications, and includes the Java Development Kit
(JDK) and Java Runtime Environment (JRE).

JAAS Java Authentication and Authorization Service. JAAS is a
pluggable Java framework for user authentication and
authorization, enabling services to authenticate and enforce access
controls upon users.

JAR file Java archive file. It is a file format based on the ZIP file format,

56 VistALink 1.5 Developer Guide May 2006

Glossary

used to aggregate many files into one.
Java Library A library of Java classes usually distributed in JAR format.
Javadoc Javadoc is a tool for generating API documentation in HTML format

from doc comments in source code. Documentation produced with
this tool is typically called Javadoc.

JDK Java Development Kit. A set of programming tools for developing
Java applications.

JNDI Java Naming and Directory Interface. A protocol to a set of APIs for
multiple naming and directory services.

JRE The Java Runtime Environment consists of the Java virtual
machine, the Java platform core classes, and supporting files. JRE
is bundled with the JDK but also available packaged separately.

JSP Java Server Pages. A language for building web interfaces for
interacting with web applications.

JVM Java Virtual Machine. The JVM interprets compiled Java binary
code (byte code) for specific computer hardware.

Kernel Kernel functions as an intermediary between the host M operating
system and VistA M applications. It consists of a standard user and
program interface and a set of utilities for performing basic VA
computer system tasks, e.g., Menu Manager, Task Manager,
Device Handler, and security.

KIDS Kernel Installation and Distribution System. The VistA/M module for
exporting new VistA software packages.

LDAP Acronym for Lightweight Directory Access Protocol. LDAP is an
open protocol that permits applications running on various
platforms to access information from directories hosted by any type
of server.

Linked Adapter Version 8.1 of WebLogic introduced a “link-ref” mechanism
enabling the resources of a single “base” adapter to be shared by
one or more “linked” adapters. The base adapter is a standalone
adapter that is completely set up. Its resources (classes, jars, etc.)
can be linked to and reused by other resource adapters (linked
adapters). The deployer only needs to modify a subset of linked
adapters’ deployment descriptor settings.

Linux An open-source operating system that runs on various types of
hardware platforms. HealtheVet-VistA servers use both Linux and
Windows operating systems.

Listener A socket routine that runs continuously at a specified port to field
incoming requests. It sends requests to a front controller for
processing. The controller returns its response to the client through
the same port. The listener creates a separate thread for each
request, so it can accept and forward requests from multiple clients
concurrently.

log4J Utility An open-source logging package distributed under the Apache
Software license. Reviewing log files produced at runtime can be
helpful in debugging and troubleshooting.

logger In log4j, a logger is a named entry in a hierarchy of loggers. The
names in the hierarchy typically follow Java package naming
conventions. Application code can select a particular logger by
name to write output to, and administrators can configure where a
particular named logger’s output is sent.

M (MUMPS) Massachusetts General Hospital Utility Multi-programming System,
abbreviated M. M is a high-level procedural programming computer
language, especially helpful for manipulating textual data.

Managed Server A server instance in a BEA WebLogic domain that is not an

May 2006 VistALink 1.5 Developer Guide 57

http://www.webopedia.com/TERM/L/open_source.html
http://www.webopedia.com/TERM/L/operating_system.html
http://www.webopedia.com/TERM/L/platform.html

Glossary

administration server, i.e., not used to configure all other server
instances in the domain.

Messaging A framework for one application to asynchronously deliver data to
another application, typically using a queuing mechanism.

Multiple A VA FileMan data type that allows more than one value for a
single entry.

Namespace A unique 2-4 character prefix for each VistA package. The DBA
assigns this character string for developers to use in naming a
package’s routines, options, and other elements. The namespace
includes a number space, a pre-defined range of numbers that
package files must stay within.

New Person File The New Person file contains information for all valid users on an
M system.

Patch An update to a VistA software package that contains an
enhancement or bug fix. Patches can include code updates,
documentation updates, and information updates. Patches are
applied to the programs on M systems by IRM services.

Plug-in A component that can interact with or be added to an application
without recompiling the application.

ra.xml ra.xml is the standard J2EE deployment descriptor for J2CA
connectors. It describes connector-related attributes and its
deployment properties using a standard DTD (Document Type
Definition) from Sun.

Re-authentication When using a J2CA connector, the process of switching the
security context of the connector from the original application
connector "user" to the actual end-user. This is done by the calling
application supplying a proper set of user credentials.

Resource Adapter J2EE resource adapter modules are system-level drivers that
integrate J2EE application servers with Enterprise Information
Systems (EIS). This term is used interchangeably with resource
adapter and connector.

Routine A program or sequence of computer instructions that may have
some general or frequent use. M routines are groups of program
lines that are saved, loaded, and called as a single unit with a
specific name.

RPC Remote Procedure Call. A defined call to M code that runs on an M
server. A client application, through the RPC Broker, can make a
call to the M server and execute an RPC on the M server. Through
this mechanism a client application can send data to an M server,
execute code on an M server, or retrieve data from an M server

RPC Broker The RPC Broker is a client/server system within VistA. It
establishes a common and consistent framework for client-server
applications to communicate and exchange data with VistA/M
servers.

RPC Security All RPCs are secured with an RPC context (a "B"-type option). An
end-user executing an RPC must have the "B"-type option
associated with the RPC in the user’s menu tree. Otherwise an
exception is thrown.

Servlet A Java program that resides on a server and executes requests
from client web pages.

Socket An operating system object that connects application requests to
network protocols.

Verify Code A password used in tandem with the access code to provide
secure user access. The Kernel’s Sign-on/Security system uses
the verify code to validate the user's identity.

58 VistALink 1.5 Developer Guide May 2006

Glossary

VistA Veterans Health Information Systems and Technology
Architecture. The VHA’s portfolio of M-based application software
used by all VA medical centers and associated facilities.

VistALink Libraries Classes written specifically for VistALink.
VMS Virtual Memory System. An operating system, originally designed

by DEC (now owned by Hewlett-Packard), that operates on the
VAX and Alpha architectures.

VPID VA Person Identifier. A new enterprise-level identifier uniquely
identifying VA ‘persons’ across the entire VA domain.

WAR file Web archive file. Contains the class files for servlets and JSPs.
WebLogic Server A J2EE application server manufactured by BEA WebLogic

Systems.
XOB Namespace The VistALink namespace. All VistALink programs and their

elements begin with the characters “XOB.”

May 2006 VistALink 1.5 Developer Guide 59

Glossary

60 VistALink 1.5 Developer Guide May 2006

	1. Introduction
	1.1. About this Guide
	1.2. Additional Resources
	1.2.1. VistALink 1.5
	1.2.2. BEA Systems

	1.3. About J2EE Connectors
	1.4. Public VistALink APIs Documentation
	1.5. Sample Applications for J2EE Server
	1.1.

	2. Developer Workstation Setup
	2.1. J2EE Development
	2.1.1. IDE
	2.1.2. J2EE Runtime

	2.2. J2SE Development
	2.2.1. IDE
	2.2.2. J2SE Runtime

	3. Using VistALink in J2EE
	3.1. Using Station Number (Institution) and Subdivision
	3.1.1. System Locator: Institution-Connector Mapping
	3.1.2. Multidivision-Aware Application Code: ConnectionSpec Credentials
	3.1.3. Example

	3.2. Request Cycle
	3.2.1. Retrieving the Connection Factory
	3.2.2. Instantiating a Connection Spec for Re-authentication
	3.2.3. Getting a Connection (Connection Spec)
	3.2.4. Executing a Request
	3.2.5. Closing the Connection
	3.2.6. Connectivity Failures and Retry Strategies

	3.3. More about Re-authentication
	3.3.1. Overview
	3.3.2. Connection Specification Classes
	3.3.3. Institution/Division Rules for Re-authentication
	3.3.4. Application Proxy User
	3.3.4.1. J2EE Application Proxy Usage Example

	3.4. Timeouts
	3.4.1. Socket-Level Forced Timeout
	3.4.1.1. Setting Socket-Level Timeouts
	3.4.1.2. Default Socket-Level Timeout
	3.4.1.3. Changing Socket Timeout as a Multiple of Default Timeout

	3.4.2. Graceful (Request-Level) Timeout
	3.4.2.1. STOP^XOBVLIB()
	3.4.2.2. $$GETTO^XOBVLIB()
	3.4.2.3. $$SETTO^XOBVLIB()
	3.4.2.4. Java and M Code RPC Timeout Call Examples

	3.5. Institution Mapping
	3.5.1. How to Configure Mappings
	3.5.2. How to View the Currently Loaded Mappings
	3.5.3. Retrieving Mappings for Applications
	3.5.4. Subdivisions

	3.6. VistALink Java API Reference

	4. Executing Requests
	4.1. Remote Procedure Calls
	4.1.1. RPC Security (“B”-Type Option)
	4.1.2. RPCs for Use by Application Proxy Users

	4.2. Request Processing
	4.2.1. Get an RpcRequest Object: RpcRequestFactory Class
	4.2.1.1. getRpcRequest() Example

	4.2.2. Set RpcRequest Parameters: “Explicit” Style
	4.2.2.1. Literal RPC Parameter Example
	4.2.2.2. Reference RPC Parameter Example
	4.2.2.3. List RPC Parameter Example:
	4.2.2.4. Combination RPC Parameter Example:

	4.2.3. Set RpcRequest Parameters: “setParams” Style
	4.2.3.1. Literal RPC Parameter Example:
	4.2.3.2. Reference RPC Parameter Example:
	4.2.3.3. List RPC Parameter Example:
	4.2.3.4. Combination RPC Parameter Example:

	4.2.4. Specifying Indices for List-Type RPC Parameters
	4.2.4.1. List RPC Parameter Example (Explicit Index)
	4.2.4.2. List RPC Parameter Example (Explicit Multi-Level Index)

	4.2.5. Other Useful RpcRequest Methods
	4.2.5.1. Clear Previous Request Parameters
	4.2.5.2. Set the Message Format (Proprietary or XML)
	4.2.5.3. Set the RPC Context
	4.2.5.4. Set the RPC Name
	4.2.5.5. Set the RPC Client Timeout

	4.3. Response Processing
	4.3.1. RpcResponse Class
	4.3.2. Request/Response Example
	4.3.3. Parsing RPC Results
	4.3.4. XML Responses

	4.4. How to Write RPCs
	4.4.1. Write Stateless RPCs Whenever Possible
	4.4.2. When State is Needed
	4.4.2.1. Session ID as Temporary Storage Index
	4.4.2.2. FileMan-Based Lock File

	4.4.3. Pitfalls of Using of $JOB in Stateful RPCs
	4.4.4. Pitfalls of Global Locking in Stateful RPCs

	5. VistALink Exception Reference
	5.1. Checked and Unchecked Exceptions
	5.2. Catching Exceptions
	5.3. VistALink Exception Hierarchy
	5.4. J2EE and J2SE Connectors Exceptions
	5.4.1. VistaLinkResourceException
	5.4.2. FoundationsException
	5.4.3. VistaLinkFaultException
	5.4.4. Common FoundationsExceptionInterface
	5.4.5. Exception Nesting

	5.5. Working with Nested Exceptions
	5.5.1. ExceptionUtils
	5.5.2. ExceptionUtils:: getFullStackTrace(Throwable e)
	5.5.3. ExceptionUtils:: getNestedExceptionByClass()

	6. Foundations Library Utilities
	6.1. Encryption: gov.va.med.crypto
	6.3. Exception: gov.va.med.exception

	6.2. J2EE Environment: gov.va.med.environment
	6.2.1. Environment.isProduction()
	6.2.2. Environment.getServerType()

	6.4. Audit Timer: gov.va.med.monitor.time
	6.4.1. Sample Code

	6.5. XML: gov.va.med.xml
	6.5.1. XmlUtilities Class
	6.5.2. XMLUtilities Example

	6.6. Network: gov.va.med.net

	7. Using VistALink with J2SE Applications
	7.1. Authenticating and Connecting to VistA in Client-Server Mode
	7.1.1. JAAS Overview

	7.2. VistALink JAAS Implementation
	7.2.1. VistaLoginModule
	7.2.2. JAAS Login Configuration Overview
	7.2.3. VistALink-Specific JAAS Login Configuration
	7.2.4. Passing the JAAS Login Configuration(s) to Your JVM
	7.2.5. Selecting the JAAS Configuration From an Application
	7.2.6. VistaLoginModule Callback Handlers

	7.3. Putting the Pieces Together: VistALink JAAS Login
	7.3.1. Logging in to VistA

	7.4. After Successfully Logging In
	7.4.1. Retrieving the VistaKernelPrincipal
	7.4.2. Retrieving the Authenticated Connection From the Principal
	7.4.3. Retrieving User Demographic Information
	7.4.4. Executing RPCs
	7.4.5. Logging Out
	7.4.5.1. Logging Out of Swing Applications

	7.5. Catching Login Exceptions
	7.5.1. VistaLoginModule Exception Hierarchy

	7.6. Unit Testing and VistALink

	Glossary

